Description: Lemma for ipassi . By ipasslem5 , F is 0 for all QQ ; since it is continuous and QQ is dense in RR by qdensere2 , we conclude F is 0 for all RR . (Contributed by NM, 24-Aug-2007) (Revised by Mario Carneiro, 6-May-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ip1i.1 | |
|
ip1i.2 | |
||
ip1i.4 | |
||
ip1i.7 | |
||
ip1i.9 | |
||
ipasslem7.a | |
||
ipasslem7.b | |
||
ipasslem7.f | |
||
Assertion | ipasslem8 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ip1i.1 | |
|
2 | ip1i.2 | |
|
3 | ip1i.4 | |
|
4 | ip1i.7 | |
|
5 | ip1i.9 | |
|
6 | ipasslem7.a | |
|
7 | ipasslem7.b | |
|
8 | ipasslem7.f | |
|
9 | 0cn | |
|
10 | qre | |
|
11 | oveq1 | |
|
12 | 11 | oveq1d | |
13 | oveq1 | |
|
14 | 12 13 | oveq12d | |
15 | ovex | |
|
16 | 14 8 15 | fvmpt | |
17 | 10 16 | syl | |
18 | qcn | |
|
19 | 5 | phnvi | |
20 | 1 3 | nvscl | |
21 | 19 20 | mp3an1 | |
22 | 18 21 | sylan | |
23 | 1 4 | dipcl | |
24 | 19 7 23 | mp3an13 | |
25 | 22 24 | syl | |
26 | 1 2 3 4 5 7 | ipasslem5 | |
27 | 25 26 | subeq0bd | |
28 | 6 27 | mpan2 | |
29 | 17 28 | eqtrd | |
30 | 29 | rgen | |
31 | 8 | funmpt2 | |
32 | qssre | |
|
33 | ovex | |
|
34 | 33 8 | dmmpti | |
35 | 32 34 | sseqtrri | |
36 | funconstss | |
|
37 | 31 35 36 | mp2an | |
38 | 30 37 | mpbi | |
39 | qdensere | |
|
40 | eqid | |
|
41 | 40 | cnfldhaus | |
42 | haust1 | |
|
43 | 41 42 | ax-mp | |
44 | eqid | |
|
45 | 1 2 3 4 5 6 7 8 44 40 | ipasslem7 | |
46 | uniretop | |
|
47 | 40 | cnfldtopon | |
48 | 47 | toponunii | |
49 | 46 48 | dnsconst | |
50 | 43 45 49 | mpanl12 | |
51 | 9 38 39 50 | mp3an | |