Metamath Proof Explorer


Theorem ipasslem9

Description: Lemma for ipassi . Conclude from ipasslem8 the inner product associative law for real numbers. (Contributed by NM, 24-Aug-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ip1i.1 X=BaseSetU
ip1i.2 G=+vU
ip1i.4 S=𝑠OLDU
ip1i.7 P=𝑖OLDU
ip1i.9 UCPreHilOLD
ipasslem9.a AX
ipasslem9.b BX
Assertion ipasslem9 CCSAPB=CAPB

Proof

Step Hyp Ref Expression
1 ip1i.1 X=BaseSetU
2 ip1i.2 G=+vU
3 ip1i.4 S=𝑠OLDU
4 ip1i.7 P=𝑖OLDU
5 ip1i.9 UCPreHilOLD
6 ipasslem9.a AX
7 ipasslem9.b BX
8 oveq1 w=CwSA=CSA
9 8 oveq1d w=CwSAPB=CSAPB
10 oveq1 w=CwAPB=CAPB
11 9 10 oveq12d w=CwSAPBwAPB=CSAPBCAPB
12 eqid wwSAPBwAPB=wwSAPBwAPB
13 ovex CSAPBCAPBV
14 11 12 13 fvmpt CwwSAPBwAPBC=CSAPBCAPB
15 1 2 3 4 5 6 7 12 ipasslem8 wwSAPBwAPB:0
16 fvconst wwSAPBwAPB:0CwwSAPBwAPBC=0
17 15 16 mpan CwwSAPBwAPBC=0
18 14 17 eqtr3d CCSAPBCAPB=0
19 recn CC
20 5 phnvi UNrmCVec
21 1 3 nvscl UNrmCVecCAXCSAX
22 20 6 21 mp3an13 CCSAX
23 1 4 dipcl UNrmCVecCSAXBXCSAPB
24 20 7 23 mp3an13 CSAXCSAPB
25 22 24 syl CCSAPB
26 1 4 dipcl UNrmCVecAXBXAPB
27 20 6 7 26 mp3an APB
28 mulcl CAPBCAPB
29 27 28 mpan2 CCAPB
30 25 29 subeq0ad CCSAPBCAPB=0CSAPB=CAPB
31 19 30 syl CCSAPBCAPB=0CSAPB=CAPB
32 18 31 mpbid CCSAPB=CAPB