Description: Lemma for ipassi . Conclude from ipasslem8 the inner product associative law for real numbers. (Contributed by NM, 24-Aug-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ip1i.1 | |
|
ip1i.2 | |
||
ip1i.4 | |
||
ip1i.7 | |
||
ip1i.9 | |
||
ipasslem9.a | |
||
ipasslem9.b | |
||
Assertion | ipasslem9 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ip1i.1 | |
|
2 | ip1i.2 | |
|
3 | ip1i.4 | |
|
4 | ip1i.7 | |
|
5 | ip1i.9 | |
|
6 | ipasslem9.a | |
|
7 | ipasslem9.b | |
|
8 | oveq1 | |
|
9 | 8 | oveq1d | |
10 | oveq1 | |
|
11 | 9 10 | oveq12d | |
12 | eqid | |
|
13 | ovex | |
|
14 | 11 12 13 | fvmpt | |
15 | 1 2 3 4 5 6 7 12 | ipasslem8 | |
16 | fvconst | |
|
17 | 15 16 | mpan | |
18 | 14 17 | eqtr3d | |
19 | recn | |
|
20 | 5 | phnvi | |
21 | 1 3 | nvscl | |
22 | 20 6 21 | mp3an13 | |
23 | 1 4 | dipcl | |
24 | 20 7 23 | mp3an13 | |
25 | 22 24 | syl | |
26 | 1 4 | dipcl | |
27 | 20 6 7 26 | mp3an | |
28 | mulcl | |
|
29 | 27 28 | mpan2 | |
30 | 25 29 | subeq0ad | |
31 | 19 30 | syl | |
32 | 18 31 | mpbid | |