Metamath Proof Explorer


Theorem ist0-4

Description: The topological indistinguishability map is injective iff the space is T_0. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 𝐹 = ( 𝑥𝑋 ↦ { 𝑦𝐽𝑥𝑦 } )
Assertion ist0-4 ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Kol2 ↔ 𝐹 : 𝑋1-1→ V ) )

Proof

Step Hyp Ref Expression
1 kqval.2 𝐹 = ( 𝑥𝑋 ↦ { 𝑦𝐽𝑥𝑦 } )
2 1 kqfeq ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧𝑋𝑤𝑋 ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ↔ ∀ 𝑦𝐽 ( 𝑧𝑦𝑤𝑦 ) ) )
3 2 3expb ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑧𝑋𝑤𝑋 ) ) → ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) ↔ ∀ 𝑦𝐽 ( 𝑧𝑦𝑤𝑦 ) ) )
4 3 imbi1d ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑧𝑋𝑤𝑋 ) ) → ( ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 ) ↔ ( ∀ 𝑦𝐽 ( 𝑧𝑦𝑤𝑦 ) → 𝑧 = 𝑤 ) ) )
5 4 2ralbidva ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑧𝑋𝑤𝑋 ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 ) ↔ ∀ 𝑧𝑋𝑤𝑋 ( ∀ 𝑦𝐽 ( 𝑧𝑦𝑤𝑦 ) → 𝑧 = 𝑤 ) ) )
6 1 kqffn ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 )
7 dffn2 ( 𝐹 Fn 𝑋𝐹 : 𝑋 ⟶ V )
8 6 7 sylib ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 : 𝑋 ⟶ V )
9 dff13 ( 𝐹 : 𝑋1-1→ V ↔ ( 𝐹 : 𝑋 ⟶ V ∧ ∀ 𝑧𝑋𝑤𝑋 ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 ) ) )
10 9 baib ( 𝐹 : 𝑋 ⟶ V → ( 𝐹 : 𝑋1-1→ V ↔ ∀ 𝑧𝑋𝑤𝑋 ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 ) ) )
11 8 10 syl ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐹 : 𝑋1-1→ V ↔ ∀ 𝑧𝑋𝑤𝑋 ( ( 𝐹𝑧 ) = ( 𝐹𝑤 ) → 𝑧 = 𝑤 ) ) )
12 ist0-2 ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Kol2 ↔ ∀ 𝑧𝑋𝑤𝑋 ( ∀ 𝑦𝐽 ( 𝑧𝑦𝑤𝑦 ) → 𝑧 = 𝑤 ) ) )
13 5 11 12 3bitr4rd ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Kol2 ↔ 𝐹 : 𝑋1-1→ V ) )