| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itcoval | ⊢ ( 𝐹  ∈  𝑉  →  ( IterComp ‘ 𝐹 )  =  seq 0 ( ( 𝑔  ∈  V ,  𝑗  ∈  V  ↦  ( 𝐹  ∘  𝑔 ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  (  I   ↾  dom  𝐹 ) ,  𝐹 ) ) ) ) | 
						
							| 2 | 1 | fveq1d | ⊢ ( 𝐹  ∈  𝑉  →  ( ( IterComp ‘ 𝐹 ) ‘ 3 )  =  ( seq 0 ( ( 𝑔  ∈  V ,  𝑗  ∈  V  ↦  ( 𝐹  ∘  𝑔 ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  (  I   ↾  dom  𝐹 ) ,  𝐹 ) ) ) ‘ 3 ) ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( Rel  𝐹  ∧  𝐹  ∈  𝑉 )  →  ( ( IterComp ‘ 𝐹 ) ‘ 3 )  =  ( seq 0 ( ( 𝑔  ∈  V ,  𝑗  ∈  V  ↦  ( 𝐹  ∘  𝑔 ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  (  I   ↾  dom  𝐹 ) ,  𝐹 ) ) ) ‘ 3 ) ) | 
						
							| 4 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 5 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 6 | 5 | a1i | ⊢ ( ( Rel  𝐹  ∧  𝐹  ∈  𝑉 )  →  2  ∈  ℕ0 ) | 
						
							| 7 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 8 | 1 | eqcomd | ⊢ ( 𝐹  ∈  𝑉  →  seq 0 ( ( 𝑔  ∈  V ,  𝑗  ∈  V  ↦  ( 𝐹  ∘  𝑔 ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  (  I   ↾  dom  𝐹 ) ,  𝐹 ) ) )  =  ( IterComp ‘ 𝐹 ) ) | 
						
							| 9 | 8 | fveq1d | ⊢ ( 𝐹  ∈  𝑉  →  ( seq 0 ( ( 𝑔  ∈  V ,  𝑗  ∈  V  ↦  ( 𝐹  ∘  𝑔 ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  (  I   ↾  dom  𝐹 ) ,  𝐹 ) ) ) ‘ 2 )  =  ( ( IterComp ‘ 𝐹 ) ‘ 2 ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( Rel  𝐹  ∧  𝐹  ∈  𝑉 )  →  ( seq 0 ( ( 𝑔  ∈  V ,  𝑗  ∈  V  ↦  ( 𝐹  ∘  𝑔 ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  (  I   ↾  dom  𝐹 ) ,  𝐹 ) ) ) ‘ 2 )  =  ( ( IterComp ‘ 𝐹 ) ‘ 2 ) ) | 
						
							| 11 |  | itcoval2 | ⊢ ( ( Rel  𝐹  ∧  𝐹  ∈  𝑉 )  →  ( ( IterComp ‘ 𝐹 ) ‘ 2 )  =  ( 𝐹  ∘  𝐹 ) ) | 
						
							| 12 | 10 11 | eqtrd | ⊢ ( ( Rel  𝐹  ∧  𝐹  ∈  𝑉 )  →  ( seq 0 ( ( 𝑔  ∈  V ,  𝑗  ∈  V  ↦  ( 𝐹  ∘  𝑔 ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  (  I   ↾  dom  𝐹 ) ,  𝐹 ) ) ) ‘ 2 )  =  ( 𝐹  ∘  𝐹 ) ) | 
						
							| 13 |  | eqidd | ⊢ ( ( Rel  𝐹  ∧  𝐹  ∈  𝑉 )  →  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  (  I   ↾  dom  𝐹 ) ,  𝐹 ) )  =  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  (  I   ↾  dom  𝐹 ) ,  𝐹 ) ) ) | 
						
							| 14 |  | 3ne0 | ⊢ 3  ≠  0 | 
						
							| 15 |  | neeq1 | ⊢ ( 𝑖  =  3  →  ( 𝑖  ≠  0  ↔  3  ≠  0 ) ) | 
						
							| 16 | 14 15 | mpbiri | ⊢ ( 𝑖  =  3  →  𝑖  ≠  0 ) | 
						
							| 17 | 16 | neneqd | ⊢ ( 𝑖  =  3  →  ¬  𝑖  =  0 ) | 
						
							| 18 | 17 | iffalsed | ⊢ ( 𝑖  =  3  →  if ( 𝑖  =  0 ,  (  I   ↾  dom  𝐹 ) ,  𝐹 )  =  𝐹 ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( ( Rel  𝐹  ∧  𝐹  ∈  𝑉 )  ∧  𝑖  =  3 )  →  if ( 𝑖  =  0 ,  (  I   ↾  dom  𝐹 ) ,  𝐹 )  =  𝐹 ) | 
						
							| 20 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 21 | 20 | a1i | ⊢ ( ( Rel  𝐹  ∧  𝐹  ∈  𝑉 )  →  3  ∈  ℕ0 ) | 
						
							| 22 |  | simpr | ⊢ ( ( Rel  𝐹  ∧  𝐹  ∈  𝑉 )  →  𝐹  ∈  𝑉 ) | 
						
							| 23 | 13 19 21 22 | fvmptd | ⊢ ( ( Rel  𝐹  ∧  𝐹  ∈  𝑉 )  →  ( ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  (  I   ↾  dom  𝐹 ) ,  𝐹 ) ) ‘ 3 )  =  𝐹 ) | 
						
							| 24 | 4 6 7 12 23 | seqp1d | ⊢ ( ( Rel  𝐹  ∧  𝐹  ∈  𝑉 )  →  ( seq 0 ( ( 𝑔  ∈  V ,  𝑗  ∈  V  ↦  ( 𝐹  ∘  𝑔 ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  (  I   ↾  dom  𝐹 ) ,  𝐹 ) ) ) ‘ 3 )  =  ( ( 𝐹  ∘  𝐹 ) ( 𝑔  ∈  V ,  𝑗  ∈  V  ↦  ( 𝐹  ∘  𝑔 ) ) 𝐹 ) ) | 
						
							| 25 |  | eqidd | ⊢ ( 𝐹  ∈  𝑉  →  ( 𝑔  ∈  V ,  𝑗  ∈  V  ↦  ( 𝐹  ∘  𝑔 ) )  =  ( 𝑔  ∈  V ,  𝑗  ∈  V  ↦  ( 𝐹  ∘  𝑔 ) ) ) | 
						
							| 26 |  | coeq2 | ⊢ ( 𝑔  =  ( 𝐹  ∘  𝐹 )  →  ( 𝐹  ∘  𝑔 )  =  ( 𝐹  ∘  ( 𝐹  ∘  𝐹 ) ) ) | 
						
							| 27 | 26 | ad2antrl | ⊢ ( ( 𝐹  ∈  𝑉  ∧  ( 𝑔  =  ( 𝐹  ∘  𝐹 )  ∧  𝑗  =  𝐹 ) )  →  ( 𝐹  ∘  𝑔 )  =  ( 𝐹  ∘  ( 𝐹  ∘  𝐹 ) ) ) | 
						
							| 28 |  | coexg | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝐹  ∈  𝑉 )  →  ( 𝐹  ∘  𝐹 )  ∈  V ) | 
						
							| 29 | 28 | anidms | ⊢ ( 𝐹  ∈  𝑉  →  ( 𝐹  ∘  𝐹 )  ∈  V ) | 
						
							| 30 |  | elex | ⊢ ( 𝐹  ∈  𝑉  →  𝐹  ∈  V ) | 
						
							| 31 |  | coexg | ⊢ ( ( 𝐹  ∈  𝑉  ∧  ( 𝐹  ∘  𝐹 )  ∈  V )  →  ( 𝐹  ∘  ( 𝐹  ∘  𝐹 ) )  ∈  V ) | 
						
							| 32 | 28 31 | syldan | ⊢ ( ( 𝐹  ∈  𝑉  ∧  𝐹  ∈  𝑉 )  →  ( 𝐹  ∘  ( 𝐹  ∘  𝐹 ) )  ∈  V ) | 
						
							| 33 | 32 | anidms | ⊢ ( 𝐹  ∈  𝑉  →  ( 𝐹  ∘  ( 𝐹  ∘  𝐹 ) )  ∈  V ) | 
						
							| 34 | 25 27 29 30 33 | ovmpod | ⊢ ( 𝐹  ∈  𝑉  →  ( ( 𝐹  ∘  𝐹 ) ( 𝑔  ∈  V ,  𝑗  ∈  V  ↦  ( 𝐹  ∘  𝑔 ) ) 𝐹 )  =  ( 𝐹  ∘  ( 𝐹  ∘  𝐹 ) ) ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( Rel  𝐹  ∧  𝐹  ∈  𝑉 )  →  ( ( 𝐹  ∘  𝐹 ) ( 𝑔  ∈  V ,  𝑗  ∈  V  ↦  ( 𝐹  ∘  𝑔 ) ) 𝐹 )  =  ( 𝐹  ∘  ( 𝐹  ∘  𝐹 ) ) ) | 
						
							| 36 | 3 24 35 | 3eqtrd | ⊢ ( ( Rel  𝐹  ∧  𝐹  ∈  𝑉 )  →  ( ( IterComp ‘ 𝐹 ) ‘ 3 )  =  ( 𝐹  ∘  ( 𝐹  ∘  𝐹 ) ) ) |