Metamath Proof Explorer


Theorem itcoval3

Description: A function iterated three times. (Contributed by AV, 2-May-2024)

Ref Expression
Assertion itcoval3 Could not format assertion : No typesetting found for |- ( ( Rel F /\ F e. V ) -> ( ( IterComp ` F ) ` 3 ) = ( F o. ( F o. F ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 itcoval Could not format ( F e. V -> ( IterComp ` F ) = seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ) : No typesetting found for |- ( F e. V -> ( IterComp ` F ) = seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ) with typecode |-
2 1 fveq1d Could not format ( F e. V -> ( ( IterComp ` F ) ` 3 ) = ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 3 ) ) : No typesetting found for |- ( F e. V -> ( ( IterComp ` F ) ` 3 ) = ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 3 ) ) with typecode |-
3 2 adantl Could not format ( ( Rel F /\ F e. V ) -> ( ( IterComp ` F ) ` 3 ) = ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 3 ) ) : No typesetting found for |- ( ( Rel F /\ F e. V ) -> ( ( IterComp ` F ) ` 3 ) = ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 3 ) ) with typecode |-
4 nn0uz 0=0
5 2nn0 20
6 5 a1i RelFFV20
7 df-3 3=2+1
8 1 eqcomd Could not format ( F e. V -> seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) = ( IterComp ` F ) ) : No typesetting found for |- ( F e. V -> seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) = ( IterComp ` F ) ) with typecode |-
9 8 fveq1d Could not format ( F e. V -> ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 2 ) = ( ( IterComp ` F ) ` 2 ) ) : No typesetting found for |- ( F e. V -> ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 2 ) = ( ( IterComp ` F ) ` 2 ) ) with typecode |-
10 9 adantl Could not format ( ( Rel F /\ F e. V ) -> ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 2 ) = ( ( IterComp ` F ) ` 2 ) ) : No typesetting found for |- ( ( Rel F /\ F e. V ) -> ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 2 ) = ( ( IterComp ` F ) ` 2 ) ) with typecode |-
11 itcoval2 Could not format ( ( Rel F /\ F e. V ) -> ( ( IterComp ` F ) ` 2 ) = ( F o. F ) ) : No typesetting found for |- ( ( Rel F /\ F e. V ) -> ( ( IterComp ` F ) ` 2 ) = ( F o. F ) ) with typecode |-
12 10 11 eqtrd RelFFVseq0gV,jVFgi0ifi=0IdomFF2=FF
13 eqidd RelFFVi0ifi=0IdomFF=i0ifi=0IdomFF
14 3ne0 30
15 neeq1 i=3i030
16 14 15 mpbiri i=3i0
17 16 neneqd i=3¬i=0
18 17 iffalsed i=3ifi=0IdomFF=F
19 18 adantl RelFFVi=3ifi=0IdomFF=F
20 3nn0 30
21 20 a1i RelFFV30
22 simpr RelFFVFV
23 13 19 21 22 fvmptd RelFFVi0ifi=0IdomFF3=F
24 4 6 7 12 23 seqp1d RelFFVseq0gV,jVFgi0ifi=0IdomFF3=FFgV,jVFgF
25 eqidd FVgV,jVFg=gV,jVFg
26 coeq2 g=FFFg=FFF
27 26 ad2antrl FVg=FFj=FFg=FFF
28 coexg FVFVFFV
29 28 anidms FVFFV
30 elex FVFV
31 coexg FVFFVFFFV
32 28 31 syldan FVFVFFFV
33 32 anidms FVFFFV
34 25 27 29 30 33 ovmpod FVFFgV,jVFgF=FFF
35 34 adantl RelFFVFFgV,jVFgF=FFF
36 3 24 35 3eqtrd Could not format ( ( Rel F /\ F e. V ) -> ( ( IterComp ` F ) ` 3 ) = ( F o. ( F o. F ) ) ) : No typesetting found for |- ( ( Rel F /\ F e. V ) -> ( ( IterComp ` F ) ` 3 ) = ( F o. ( F o. F ) ) ) with typecode |-