| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgeq12dv.2 | ⊢ ( 𝜑  →  𝐴  =  𝐵 ) | 
						
							| 2 |  | itgeq12dv.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  =  𝐷 ) | 
						
							| 3 | 2 | fvoveq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) ) ) | 
						
							| 4 | 3 | breq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  ↔  0  ≤  ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) ) ) ) | 
						
							| 5 | 4 | pm5.32da | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) )  ↔  ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) ) ) ) ) | 
						
							| 6 | 1 | eleq2d | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  𝐵 ) ) | 
						
							| 7 | 6 | anbi1d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) ) )  ↔  ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) ) ) ) ) | 
						
							| 8 | 5 7 | bitrd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) )  ↔  ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) ) ) ) ) | 
						
							| 9 | 3 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) )  →  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) ) ) | 
						
							| 10 |  | eqidd | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) )  →  0  =  0 ) | 
						
							| 11 | 8 9 10 | ifbieq12d2 | ⊢ ( 𝜑  →  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) | 
						
							| 12 | 11 | mpteq2dv | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( 𝜑  →  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  =  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( 𝜑  →  ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) ) ) | 
						
							| 15 | 14 | sumeq2sdv | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) ) ) | 
						
							| 16 |  | eqid | ⊢ ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) | 
						
							| 17 | 16 | dfitg | ⊢ ∫ 𝐴 𝐶  d 𝑥  =  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐶  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) ) | 
						
							| 18 |  | eqid | ⊢ ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) ) | 
						
							| 19 | 18 | dfitg | ⊢ ∫ 𝐵 𝐷  d 𝑥  =  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐵  ∧  0  ≤  ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐷  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) ) | 
						
							| 20 | 15 17 19 | 3eqtr4g | ⊢ ( 𝜑  →  ∫ 𝐴 𝐶  d 𝑥  =  ∫ 𝐵 𝐷  d 𝑥 ) |