Step |
Hyp |
Ref |
Expression |
1 |
|
itgeq12dv.2 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
2 |
|
itgeq12dv.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 = 𝐷 ) |
3 |
2
|
fvoveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) ) |
4 |
3
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ↔ 0 ≤ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) ) ) |
5 |
4
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) ) ) ) |
6 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
7 |
6
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) ) ) ) |
8 |
5 7
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) ) ) ) |
9 |
3
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) ) → ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) ) |
10 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) ) → 0 = 0 ) |
11 |
8 9 10
|
ifbieq12d2 |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
12 |
11
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
13 |
12
|
fveq2d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝜑 → ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) ) |
15 |
14
|
sumeq2sdv |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) ) |
16 |
|
eqid |
⊢ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) |
17 |
16
|
dfitg |
⊢ ∫ 𝐴 𝐶 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
18 |
|
eqid |
⊢ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) |
19 |
18
|
dfitg |
⊢ ∫ 𝐵 𝐷 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐵 ∧ 0 ≤ ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐷 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
20 |
15 17 19
|
3eqtr4g |
⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐵 𝐷 d 𝑥 ) |