| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bracl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℂ ) |
| 2 |
1
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℂ ) |
| 3 |
|
brafn |
⊢ ( 𝐶 ∈ ℋ → ( bra ‘ 𝐶 ) : ℋ ⟶ ℂ ) |
| 4 |
3
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( bra ‘ 𝐶 ) : ℋ ⟶ ℂ ) |
| 5 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → 𝐷 ∈ ℋ ) |
| 6 |
|
hfmval |
⊢ ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℂ ∧ ( bra ‘ 𝐶 ) : ℋ ⟶ ℂ ∧ 𝐷 ∈ ℋ ) → ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ·fn ( bra ‘ 𝐶 ) ) ‘ 𝐷 ) = ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ) ) |
| 7 |
2 4 5 6
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ·fn ( bra ‘ 𝐶 ) ) ‘ 𝐷 ) = ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ) ) |
| 8 |
7
|
eqcomd |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ) = ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ·fn ( bra ‘ 𝐶 ) ) ‘ 𝐷 ) ) |