Metamath Proof Explorer


Theorem kbass3

Description: Dirac bra-ket associative law <. A | B >. <. C | D >. = ( <. A | B >. <. C | ) | D >. . (Contributed by NM, 30-May-2006) (New usage is discouraged.)

Ref Expression
Assertion kbass3 ABCDbraABbraCD=braAB·fnbraCD

Proof

Step Hyp Ref Expression
1 bracl ABbraAB
2 1 adantr ABCDbraAB
3 brafn CbraC:
4 3 ad2antrl ABCDbraC:
5 simprr ABCDD
6 hfmval braABbraC:DbraAB·fnbraCD=braABbraCD
7 2 4 5 6 syl3anc ABCDbraAB·fnbraCD=braABbraCD
8 7 eqcomd ABCDbraABbraCD=braAB·fnbraCD