| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnglidl0.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
| 2 |
|
rnglidl0.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 3 |
|
rlmlmod |
⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |
| 4 |
|
rlm0 |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) |
| 5 |
2 4
|
eqtri |
⊢ 0 = ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) |
| 6 |
|
eqid |
⊢ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
| 7 |
5 6
|
lsssn0 |
⊢ ( ( ringLMod ‘ 𝑅 ) ∈ LMod → { 0 } ∈ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 8 |
3 7
|
syl |
⊢ ( 𝑅 ∈ Ring → { 0 } ∈ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 9 |
|
lidlval |
⊢ ( LIdeal ‘ 𝑅 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
| 10 |
1 9
|
eqtri |
⊢ 𝑈 = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
| 11 |
8 10
|
eleqtrrdi |
⊢ ( 𝑅 ∈ Ring → { 0 } ∈ 𝑈 ) |