| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnglidl0.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
| 2 |
|
rnglidl0.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 4 |
3 2
|
rng0cl |
⊢ ( 𝑅 ∈ Rng → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 5 |
4
|
snssd |
⊢ ( 𝑅 ∈ Rng → { 0 } ⊆ ( Base ‘ 𝑅 ) ) |
| 6 |
2
|
fvexi |
⊢ 0 ∈ V |
| 7 |
6
|
a1i |
⊢ ( 𝑅 ∈ Rng → 0 ∈ V ) |
| 8 |
7
|
snn0d |
⊢ ( 𝑅 ∈ Rng → { 0 } ≠ ∅ ) |
| 9 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 10 |
3 9 2
|
rngrz |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 11 |
10
|
oveq1d |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) = ( 0 ( +g ‘ 𝑅 ) 0 ) ) |
| 12 |
|
rnggrp |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) |
| 13 |
3 2
|
grpidcl |
⊢ ( 𝑅 ∈ Grp → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 14 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 15 |
3 14 2
|
grprid |
⊢ ( ( 𝑅 ∈ Grp ∧ 0 ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
| 16 |
12 13 15
|
syl2anc2 |
⊢ ( 𝑅 ∈ Rng → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
| 18 |
11 17
|
eqtrd |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) = 0 ) |
| 19 |
6
|
elsn2 |
⊢ ( ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) ∈ { 0 } ↔ ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) = 0 ) |
| 20 |
18 19
|
sylibr |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) ∈ { 0 } ) |
| 21 |
|
oveq2 |
⊢ ( 𝑦 = 0 → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ) |
| 22 |
21
|
oveq1d |
⊢ ( 𝑦 = 0 → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 𝑧 ) ) |
| 23 |
22
|
eleq1d |
⊢ ( 𝑦 = 0 → ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ↔ ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ) ) |
| 24 |
23
|
ralbidv |
⊢ ( 𝑦 = 0 → ( ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ↔ ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ) ) |
| 25 |
6 24
|
ralsn |
⊢ ( ∀ 𝑦 ∈ { 0 } ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ↔ ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ) |
| 26 |
|
oveq2 |
⊢ ( 𝑧 = 0 → ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) ) |
| 27 |
26
|
eleq1d |
⊢ ( 𝑧 = 0 → ( ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ↔ ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) ∈ { 0 } ) ) |
| 28 |
6 27
|
ralsn |
⊢ ( ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ↔ ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) ∈ { 0 } ) |
| 29 |
25 28
|
bitri |
⊢ ( ∀ 𝑦 ∈ { 0 } ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ↔ ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) ( +g ‘ 𝑅 ) 0 ) ∈ { 0 } ) |
| 30 |
20 29
|
sylibr |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ∀ 𝑦 ∈ { 0 } ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ) |
| 31 |
30
|
ralrimiva |
⊢ ( 𝑅 ∈ Rng → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ { 0 } ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ) |
| 32 |
1 3 14 9
|
islidl |
⊢ ( { 0 } ∈ 𝑈 ↔ ( { 0 } ⊆ ( Base ‘ 𝑅 ) ∧ { 0 } ≠ ∅ ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ { 0 } ∀ 𝑧 ∈ { 0 } ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ { 0 } ) ) |
| 33 |
5 8 31 32
|
syl3anbrc |
⊢ ( 𝑅 ∈ Rng → { 0 } ∈ 𝑈 ) |