| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnglidl0.u |
|- U = ( LIdeal ` R ) |
| 2 |
|
rnglidl0.z |
|- .0. = ( 0g ` R ) |
| 3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 4 |
3 2
|
rng0cl |
|- ( R e. Rng -> .0. e. ( Base ` R ) ) |
| 5 |
4
|
snssd |
|- ( R e. Rng -> { .0. } C_ ( Base ` R ) ) |
| 6 |
2
|
fvexi |
|- .0. e. _V |
| 7 |
6
|
a1i |
|- ( R e. Rng -> .0. e. _V ) |
| 8 |
7
|
snn0d |
|- ( R e. Rng -> { .0. } =/= (/) ) |
| 9 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 10 |
3 9 2
|
rngrz |
|- ( ( R e. Rng /\ x e. ( Base ` R ) ) -> ( x ( .r ` R ) .0. ) = .0. ) |
| 11 |
10
|
oveq1d |
|- ( ( R e. Rng /\ x e. ( Base ` R ) ) -> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) = ( .0. ( +g ` R ) .0. ) ) |
| 12 |
|
rnggrp |
|- ( R e. Rng -> R e. Grp ) |
| 13 |
3 2
|
grpidcl |
|- ( R e. Grp -> .0. e. ( Base ` R ) ) |
| 14 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 15 |
3 14 2
|
grprid |
|- ( ( R e. Grp /\ .0. e. ( Base ` R ) ) -> ( .0. ( +g ` R ) .0. ) = .0. ) |
| 16 |
12 13 15
|
syl2anc2 |
|- ( R e. Rng -> ( .0. ( +g ` R ) .0. ) = .0. ) |
| 17 |
16
|
adantr |
|- ( ( R e. Rng /\ x e. ( Base ` R ) ) -> ( .0. ( +g ` R ) .0. ) = .0. ) |
| 18 |
11 17
|
eqtrd |
|- ( ( R e. Rng /\ x e. ( Base ` R ) ) -> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) = .0. ) |
| 19 |
6
|
elsn2 |
|- ( ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) e. { .0. } <-> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) = .0. ) |
| 20 |
18 19
|
sylibr |
|- ( ( R e. Rng /\ x e. ( Base ` R ) ) -> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) e. { .0. } ) |
| 21 |
|
oveq2 |
|- ( y = .0. -> ( x ( .r ` R ) y ) = ( x ( .r ` R ) .0. ) ) |
| 22 |
21
|
oveq1d |
|- ( y = .0. -> ( ( x ( .r ` R ) y ) ( +g ` R ) z ) = ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) ) |
| 23 |
22
|
eleq1d |
|- ( y = .0. -> ( ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } <-> ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) e. { .0. } ) ) |
| 24 |
23
|
ralbidv |
|- ( y = .0. -> ( A. z e. { .0. } ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } <-> A. z e. { .0. } ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) e. { .0. } ) ) |
| 25 |
6 24
|
ralsn |
|- ( A. y e. { .0. } A. z e. { .0. } ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } <-> A. z e. { .0. } ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) e. { .0. } ) |
| 26 |
|
oveq2 |
|- ( z = .0. -> ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) = ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) ) |
| 27 |
26
|
eleq1d |
|- ( z = .0. -> ( ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) e. { .0. } <-> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) e. { .0. } ) ) |
| 28 |
6 27
|
ralsn |
|- ( A. z e. { .0. } ( ( x ( .r ` R ) .0. ) ( +g ` R ) z ) e. { .0. } <-> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) e. { .0. } ) |
| 29 |
25 28
|
bitri |
|- ( A. y e. { .0. } A. z e. { .0. } ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } <-> ( ( x ( .r ` R ) .0. ) ( +g ` R ) .0. ) e. { .0. } ) |
| 30 |
20 29
|
sylibr |
|- ( ( R e. Rng /\ x e. ( Base ` R ) ) -> A. y e. { .0. } A. z e. { .0. } ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } ) |
| 31 |
30
|
ralrimiva |
|- ( R e. Rng -> A. x e. ( Base ` R ) A. y e. { .0. } A. z e. { .0. } ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } ) |
| 32 |
1 3 14 9
|
islidl |
|- ( { .0. } e. U <-> ( { .0. } C_ ( Base ` R ) /\ { .0. } =/= (/) /\ A. x e. ( Base ` R ) A. y e. { .0. } A. z e. { .0. } ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. { .0. } ) ) |
| 33 |
5 8 31 32
|
syl3anbrc |
|- ( R e. Rng -> { .0. } e. U ) |