| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limeq | ⊢ ( 𝑥  =  𝑧  →  ( Lim  𝑥  ↔  Lim  𝑧 ) ) | 
						
							| 2 | 1 | rspcv | ⊢ ( 𝑧  ∈  𝐴  →  ( ∀ 𝑥  ∈  𝐴 Lim  𝑥  →  Lim  𝑧 ) ) | 
						
							| 3 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 4 |  | limelon | ⊢ ( ( 𝑧  ∈  V  ∧  Lim  𝑧 )  →  𝑧  ∈  On ) | 
						
							| 5 | 3 4 | mpan | ⊢ ( Lim  𝑧  →  𝑧  ∈  On ) | 
						
							| 6 | 2 5 | syl6com | ⊢ ( ∀ 𝑥  ∈  𝐴 Lim  𝑥  →  ( 𝑧  ∈  𝐴  →  𝑧  ∈  On ) ) | 
						
							| 7 | 6 | ssrdv | ⊢ ( ∀ 𝑥  ∈  𝐴 Lim  𝑥  →  𝐴  ⊆  On ) | 
						
							| 8 |  | ssorduni | ⊢ ( 𝐴  ⊆  On  →  Ord  ∪  𝐴 ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ∀ 𝑥  ∈  𝐴 Lim  𝑥  →  Ord  ∪  𝐴 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝐴  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐴 Lim  𝑥 )  →  Ord  ∪  𝐴 ) | 
						
							| 11 |  | n0 | ⊢ ( 𝐴  ≠  ∅  ↔  ∃ 𝑧 𝑧  ∈  𝐴 ) | 
						
							| 12 |  | 0ellim | ⊢ ( Lim  𝑧  →  ∅  ∈  𝑧 ) | 
						
							| 13 |  | elunii | ⊢ ( ( ∅  ∈  𝑧  ∧  𝑧  ∈  𝐴 )  →  ∅  ∈  ∪  𝐴 ) | 
						
							| 14 | 13 | expcom | ⊢ ( 𝑧  ∈  𝐴  →  ( ∅  ∈  𝑧  →  ∅  ∈  ∪  𝐴 ) ) | 
						
							| 15 | 12 14 | syl5 | ⊢ ( 𝑧  ∈  𝐴  →  ( Lim  𝑧  →  ∅  ∈  ∪  𝐴 ) ) | 
						
							| 16 | 2 15 | syld | ⊢ ( 𝑧  ∈  𝐴  →  ( ∀ 𝑥  ∈  𝐴 Lim  𝑥  →  ∅  ∈  ∪  𝐴 ) ) | 
						
							| 17 | 16 | exlimiv | ⊢ ( ∃ 𝑧 𝑧  ∈  𝐴  →  ( ∀ 𝑥  ∈  𝐴 Lim  𝑥  →  ∅  ∈  ∪  𝐴 ) ) | 
						
							| 18 | 11 17 | sylbi | ⊢ ( 𝐴  ≠  ∅  →  ( ∀ 𝑥  ∈  𝐴 Lim  𝑥  →  ∅  ∈  ∪  𝐴 ) ) | 
						
							| 19 | 18 | imp | ⊢ ( ( 𝐴  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐴 Lim  𝑥 )  →  ∅  ∈  ∪  𝐴 ) | 
						
							| 20 |  | eluni2 | ⊢ ( 𝑦  ∈  ∪  𝐴  ↔  ∃ 𝑧  ∈  𝐴 𝑦  ∈  𝑧 ) | 
						
							| 21 | 1 | rspccv | ⊢ ( ∀ 𝑥  ∈  𝐴 Lim  𝑥  →  ( 𝑧  ∈  𝐴  →  Lim  𝑧 ) ) | 
						
							| 22 |  | limsuc | ⊢ ( Lim  𝑧  →  ( 𝑦  ∈  𝑧  ↔  suc  𝑦  ∈  𝑧 ) ) | 
						
							| 23 | 22 | anbi1d | ⊢ ( Lim  𝑧  →  ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝐴 )  ↔  ( suc  𝑦  ∈  𝑧  ∧  𝑧  ∈  𝐴 ) ) ) | 
						
							| 24 |  | elunii | ⊢ ( ( suc  𝑦  ∈  𝑧  ∧  𝑧  ∈  𝐴 )  →  suc  𝑦  ∈  ∪  𝐴 ) | 
						
							| 25 | 23 24 | biimtrdi | ⊢ ( Lim  𝑧  →  ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  𝐴 )  →  suc  𝑦  ∈  ∪  𝐴 ) ) | 
						
							| 26 | 25 | expd | ⊢ ( Lim  𝑧  →  ( 𝑦  ∈  𝑧  →  ( 𝑧  ∈  𝐴  →  suc  𝑦  ∈  ∪  𝐴 ) ) ) | 
						
							| 27 | 26 | com3r | ⊢ ( 𝑧  ∈  𝐴  →  ( Lim  𝑧  →  ( 𝑦  ∈  𝑧  →  suc  𝑦  ∈  ∪  𝐴 ) ) ) | 
						
							| 28 | 21 27 | sylcom | ⊢ ( ∀ 𝑥  ∈  𝐴 Lim  𝑥  →  ( 𝑧  ∈  𝐴  →  ( 𝑦  ∈  𝑧  →  suc  𝑦  ∈  ∪  𝐴 ) ) ) | 
						
							| 29 | 28 | rexlimdv | ⊢ ( ∀ 𝑥  ∈  𝐴 Lim  𝑥  →  ( ∃ 𝑧  ∈  𝐴 𝑦  ∈  𝑧  →  suc  𝑦  ∈  ∪  𝐴 ) ) | 
						
							| 30 | 20 29 | biimtrid | ⊢ ( ∀ 𝑥  ∈  𝐴 Lim  𝑥  →  ( 𝑦  ∈  ∪  𝐴  →  suc  𝑦  ∈  ∪  𝐴 ) ) | 
						
							| 31 | 30 | ralrimiv | ⊢ ( ∀ 𝑥  ∈  𝐴 Lim  𝑥  →  ∀ 𝑦  ∈  ∪  𝐴 suc  𝑦  ∈  ∪  𝐴 ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( 𝐴  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐴 Lim  𝑥 )  →  ∀ 𝑦  ∈  ∪  𝐴 suc  𝑦  ∈  ∪  𝐴 ) | 
						
							| 33 |  | dflim4 | ⊢ ( Lim  ∪  𝐴  ↔  ( Ord  ∪  𝐴  ∧  ∅  ∈  ∪  𝐴  ∧  ∀ 𝑦  ∈  ∪  𝐴 suc  𝑦  ∈  ∪  𝐴 ) ) | 
						
							| 34 | 10 19 32 33 | syl3anbrc | ⊢ ( ( 𝐴  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐴 Lim  𝑥 )  →  Lim  ∪  𝐴 ) |