Step |
Hyp |
Ref |
Expression |
1 |
|
lincresunit.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
lincresunit.r |
⊢ 𝑅 = ( Scalar ‘ 𝑀 ) |
3 |
|
lincresunit.e |
⊢ 𝐸 = ( Base ‘ 𝑅 ) |
4 |
|
lincresunit.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
5 |
|
lincresunit.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
6 |
|
lincresunit.z |
⊢ 𝑍 = ( 0g ‘ 𝑀 ) |
7 |
|
lincresunit.n |
⊢ 𝑁 = ( invg ‘ 𝑅 ) |
8 |
|
lincresunit.i |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
9 |
|
lincresunit.t |
⊢ · = ( .r ‘ 𝑅 ) |
10 |
|
lincresunit.g |
⊢ 𝐺 = ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑠 ) ) ) |
11 |
|
lveclmod |
⊢ ( 𝑀 ∈ LVec → 𝑀 ∈ LMod ) |
12 |
11
|
3anim2i |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆 ) → ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) |
14 |
|
simp21 |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ) |
15 |
|
elmapi |
⊢ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) → 𝐹 : 𝑆 ⟶ 𝐸 ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ≠ 0 ∧ 𝐹 finSupp 0 ) → 𝐹 : 𝑆 ⟶ 𝐸 ) |
17 |
|
simp3 |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) |
18 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝑆 ⟶ 𝐸 ∧ 𝑋 ∈ 𝑆 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝐸 ) |
19 |
16 17 18
|
syl2anr |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ≠ 0 ∧ 𝐹 finSupp 0 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝐸 ) |
20 |
|
simpr2 |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ≠ 0 ∧ 𝐹 finSupp 0 ) ) → ( 𝐹 ‘ 𝑋 ) ≠ 0 ) |
21 |
2
|
lvecdrng |
⊢ ( 𝑀 ∈ LVec → 𝑅 ∈ DivRing ) |
22 |
21
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆 ) → 𝑅 ∈ DivRing ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ≠ 0 ∧ 𝐹 finSupp 0 ) ) → 𝑅 ∈ DivRing ) |
24 |
3 4 5
|
drngunit |
⊢ ( 𝑅 ∈ DivRing → ( ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ↔ ( ( 𝐹 ‘ 𝑋 ) ∈ 𝐸 ∧ ( 𝐹 ‘ 𝑋 ) ≠ 0 ) ) ) |
25 |
23 24
|
syl |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ≠ 0 ∧ 𝐹 finSupp 0 ) ) → ( ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ↔ ( ( 𝐹 ‘ 𝑋 ) ∈ 𝐸 ∧ ( 𝐹 ‘ 𝑋 ) ≠ 0 ) ) ) |
26 |
19 20 25
|
mpbir2and |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ≠ 0 ∧ 𝐹 finSupp 0 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
27 |
26
|
3adant3 |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
28 |
|
simp3 |
⊢ ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ≠ 0 ∧ 𝐹 finSupp 0 ) → 𝐹 finSupp 0 ) |
29 |
28
|
3ad2ant2 |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → 𝐹 finSupp 0 ) |
30 |
|
simp3 |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) |
31 |
1 2 3 4 5 6 7 8 9 10
|
lincresunit3 |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) = 𝑋 ) |
32 |
13 14 27 29 30 31
|
syl131anc |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) = 𝑋 ) |