Metamath Proof Explorer


Theorem lincreslvec3

Description: Property 3 of a specially modified restriction of a linear combination in a vector space. (Contributed by AV, 18-May-2019) (Proof shortened by AV, 30-Jul-2019)

Ref Expression
Hypotheses lincresunit.b
|- B = ( Base ` M )
lincresunit.r
|- R = ( Scalar ` M )
lincresunit.e
|- E = ( Base ` R )
lincresunit.u
|- U = ( Unit ` R )
lincresunit.0
|- .0. = ( 0g ` R )
lincresunit.z
|- Z = ( 0g ` M )
lincresunit.n
|- N = ( invg ` R )
lincresunit.i
|- I = ( invr ` R )
lincresunit.t
|- .x. = ( .r ` R )
lincresunit.g
|- G = ( s e. ( S \ { X } ) |-> ( ( I ` ( N ` ( F ` X ) ) ) .x. ( F ` s ) ) )
Assertion lincreslvec3
|- ( ( ( S e. ~P B /\ M e. LVec /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) /\ ( F ( linC ` M ) S ) = Z ) -> ( G ( linC ` M ) ( S \ { X } ) ) = X )

Proof

Step Hyp Ref Expression
1 lincresunit.b
 |-  B = ( Base ` M )
2 lincresunit.r
 |-  R = ( Scalar ` M )
3 lincresunit.e
 |-  E = ( Base ` R )
4 lincresunit.u
 |-  U = ( Unit ` R )
5 lincresunit.0
 |-  .0. = ( 0g ` R )
6 lincresunit.z
 |-  Z = ( 0g ` M )
7 lincresunit.n
 |-  N = ( invg ` R )
8 lincresunit.i
 |-  I = ( invr ` R )
9 lincresunit.t
 |-  .x. = ( .r ` R )
10 lincresunit.g
 |-  G = ( s e. ( S \ { X } ) |-> ( ( I ` ( N ` ( F ` X ) ) ) .x. ( F ` s ) ) )
11 lveclmod
 |-  ( M e. LVec -> M e. LMod )
12 11 3anim2i
 |-  ( ( S e. ~P B /\ M e. LVec /\ X e. S ) -> ( S e. ~P B /\ M e. LMod /\ X e. S ) )
13 12 3ad2ant1
 |-  ( ( ( S e. ~P B /\ M e. LVec /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) /\ ( F ( linC ` M ) S ) = Z ) -> ( S e. ~P B /\ M e. LMod /\ X e. S ) )
14 simp21
 |-  ( ( ( S e. ~P B /\ M e. LVec /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) /\ ( F ( linC ` M ) S ) = Z ) -> F e. ( E ^m S ) )
15 elmapi
 |-  ( F e. ( E ^m S ) -> F : S --> E )
16 15 3ad2ant1
 |-  ( ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) -> F : S --> E )
17 simp3
 |-  ( ( S e. ~P B /\ M e. LVec /\ X e. S ) -> X e. S )
18 ffvelrn
 |-  ( ( F : S --> E /\ X e. S ) -> ( F ` X ) e. E )
19 16 17 18 syl2anr
 |-  ( ( ( S e. ~P B /\ M e. LVec /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) ) -> ( F ` X ) e. E )
20 simpr2
 |-  ( ( ( S e. ~P B /\ M e. LVec /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) ) -> ( F ` X ) =/= .0. )
21 2 lvecdrng
 |-  ( M e. LVec -> R e. DivRing )
22 21 3ad2ant2
 |-  ( ( S e. ~P B /\ M e. LVec /\ X e. S ) -> R e. DivRing )
23 22 adantr
 |-  ( ( ( S e. ~P B /\ M e. LVec /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) ) -> R e. DivRing )
24 3 4 5 drngunit
 |-  ( R e. DivRing -> ( ( F ` X ) e. U <-> ( ( F ` X ) e. E /\ ( F ` X ) =/= .0. ) ) )
25 23 24 syl
 |-  ( ( ( S e. ~P B /\ M e. LVec /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) ) -> ( ( F ` X ) e. U <-> ( ( F ` X ) e. E /\ ( F ` X ) =/= .0. ) ) )
26 19 20 25 mpbir2and
 |-  ( ( ( S e. ~P B /\ M e. LVec /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) ) -> ( F ` X ) e. U )
27 26 3adant3
 |-  ( ( ( S e. ~P B /\ M e. LVec /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) /\ ( F ( linC ` M ) S ) = Z ) -> ( F ` X ) e. U )
28 simp3
 |-  ( ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) -> F finSupp .0. )
29 28 3ad2ant2
 |-  ( ( ( S e. ~P B /\ M e. LVec /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) /\ ( F ( linC ` M ) S ) = Z ) -> F finSupp .0. )
30 simp3
 |-  ( ( ( S e. ~P B /\ M e. LVec /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) /\ ( F ( linC ` M ) S ) = Z ) -> ( F ( linC ` M ) S ) = Z )
31 1 2 3 4 5 6 7 8 9 10 lincresunit3
 |-  ( ( ( S e. ~P B /\ M e. LMod /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) e. U /\ F finSupp .0. ) /\ ( F ( linC ` M ) S ) = Z ) -> ( G ( linC ` M ) ( S \ { X } ) ) = X )
32 13 14 27 29 30 31 syl131anc
 |-  ( ( ( S e. ~P B /\ M e. LVec /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) /\ ( F ( linC ` M ) S ) = Z ) -> ( G ( linC ` M ) ( S \ { X } ) ) = X )