Step |
Hyp |
Ref |
Expression |
1 |
|
lincresunit.b |
|- B = ( Base ` M ) |
2 |
|
lincresunit.r |
|- R = ( Scalar ` M ) |
3 |
|
lincresunit.e |
|- E = ( Base ` R ) |
4 |
|
lincresunit.u |
|- U = ( Unit ` R ) |
5 |
|
lincresunit.0 |
|- .0. = ( 0g ` R ) |
6 |
|
lincresunit.z |
|- Z = ( 0g ` M ) |
7 |
|
lincresunit.n |
|- N = ( invg ` R ) |
8 |
|
lincresunit.i |
|- I = ( invr ` R ) |
9 |
|
lincresunit.t |
|- .x. = ( .r ` R ) |
10 |
|
lincresunit.g |
|- G = ( s e. ( S \ { X } ) |-> ( ( I ` ( N ` ( F ` X ) ) ) .x. ( F ` s ) ) ) |
11 |
|
lveclmod |
|- ( M e. LVec -> M e. LMod ) |
12 |
11
|
3anim2i |
|- ( ( S e. ~P B /\ M e. LVec /\ X e. S ) -> ( S e. ~P B /\ M e. LMod /\ X e. S ) ) |
13 |
12
|
3ad2ant1 |
|- ( ( ( S e. ~P B /\ M e. LVec /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) /\ ( F ( linC ` M ) S ) = Z ) -> ( S e. ~P B /\ M e. LMod /\ X e. S ) ) |
14 |
|
simp21 |
|- ( ( ( S e. ~P B /\ M e. LVec /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) /\ ( F ( linC ` M ) S ) = Z ) -> F e. ( E ^m S ) ) |
15 |
|
elmapi |
|- ( F e. ( E ^m S ) -> F : S --> E ) |
16 |
15
|
3ad2ant1 |
|- ( ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) -> F : S --> E ) |
17 |
|
simp3 |
|- ( ( S e. ~P B /\ M e. LVec /\ X e. S ) -> X e. S ) |
18 |
|
ffvelrn |
|- ( ( F : S --> E /\ X e. S ) -> ( F ` X ) e. E ) |
19 |
16 17 18
|
syl2anr |
|- ( ( ( S e. ~P B /\ M e. LVec /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) ) -> ( F ` X ) e. E ) |
20 |
|
simpr2 |
|- ( ( ( S e. ~P B /\ M e. LVec /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) ) -> ( F ` X ) =/= .0. ) |
21 |
2
|
lvecdrng |
|- ( M e. LVec -> R e. DivRing ) |
22 |
21
|
3ad2ant2 |
|- ( ( S e. ~P B /\ M e. LVec /\ X e. S ) -> R e. DivRing ) |
23 |
22
|
adantr |
|- ( ( ( S e. ~P B /\ M e. LVec /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) ) -> R e. DivRing ) |
24 |
3 4 5
|
drngunit |
|- ( R e. DivRing -> ( ( F ` X ) e. U <-> ( ( F ` X ) e. E /\ ( F ` X ) =/= .0. ) ) ) |
25 |
23 24
|
syl |
|- ( ( ( S e. ~P B /\ M e. LVec /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) ) -> ( ( F ` X ) e. U <-> ( ( F ` X ) e. E /\ ( F ` X ) =/= .0. ) ) ) |
26 |
19 20 25
|
mpbir2and |
|- ( ( ( S e. ~P B /\ M e. LVec /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) ) -> ( F ` X ) e. U ) |
27 |
26
|
3adant3 |
|- ( ( ( S e. ~P B /\ M e. LVec /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) /\ ( F ( linC ` M ) S ) = Z ) -> ( F ` X ) e. U ) |
28 |
|
simp3 |
|- ( ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) -> F finSupp .0. ) |
29 |
28
|
3ad2ant2 |
|- ( ( ( S e. ~P B /\ M e. LVec /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) /\ ( F ( linC ` M ) S ) = Z ) -> F finSupp .0. ) |
30 |
|
simp3 |
|- ( ( ( S e. ~P B /\ M e. LVec /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) /\ ( F ( linC ` M ) S ) = Z ) -> ( F ( linC ` M ) S ) = Z ) |
31 |
1 2 3 4 5 6 7 8 9 10
|
lincresunit3 |
|- ( ( ( S e. ~P B /\ M e. LMod /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) e. U /\ F finSupp .0. ) /\ ( F ( linC ` M ) S ) = Z ) -> ( G ( linC ` M ) ( S \ { X } ) ) = X ) |
32 |
13 14 27 29 30 31
|
syl131anc |
|- ( ( ( S e. ~P B /\ M e. LVec /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) =/= .0. /\ F finSupp .0. ) /\ ( F ( linC ` M ) S ) = Z ) -> ( G ( linC ` M ) ( S \ { X } ) ) = X ) |