Metamath Proof Explorer


Theorem lincreslvec3

Description: Property 3 of a specially modified restriction of a linear combination in a vector space. (Contributed by AV, 18-May-2019) (Proof shortened by AV, 30-Jul-2019)

Ref Expression
Hypotheses lincresunit.b B = Base M
lincresunit.r R = Scalar M
lincresunit.e E = Base R
lincresunit.u U = Unit R
lincresunit.0 0 ˙ = 0 R
lincresunit.z Z = 0 M
lincresunit.n N = inv g R
lincresunit.i I = inv r R
lincresunit.t · ˙ = R
lincresunit.g G = s S X I N F X · ˙ F s
Assertion lincreslvec3 S 𝒫 B M LVec X S F E S F X 0 ˙ finSupp 0 ˙ F F linC M S = Z G linC M S X = X

Proof

Step Hyp Ref Expression
1 lincresunit.b B = Base M
2 lincresunit.r R = Scalar M
3 lincresunit.e E = Base R
4 lincresunit.u U = Unit R
5 lincresunit.0 0 ˙ = 0 R
6 lincresunit.z Z = 0 M
7 lincresunit.n N = inv g R
8 lincresunit.i I = inv r R
9 lincresunit.t · ˙ = R
10 lincresunit.g G = s S X I N F X · ˙ F s
11 lveclmod M LVec M LMod
12 11 3anim2i S 𝒫 B M LVec X S S 𝒫 B M LMod X S
13 12 3ad2ant1 S 𝒫 B M LVec X S F E S F X 0 ˙ finSupp 0 ˙ F F linC M S = Z S 𝒫 B M LMod X S
14 simp21 S 𝒫 B M LVec X S F E S F X 0 ˙ finSupp 0 ˙ F F linC M S = Z F E S
15 elmapi F E S F : S E
16 15 3ad2ant1 F E S F X 0 ˙ finSupp 0 ˙ F F : S E
17 simp3 S 𝒫 B M LVec X S X S
18 ffvelrn F : S E X S F X E
19 16 17 18 syl2anr S 𝒫 B M LVec X S F E S F X 0 ˙ finSupp 0 ˙ F F X E
20 simpr2 S 𝒫 B M LVec X S F E S F X 0 ˙ finSupp 0 ˙ F F X 0 ˙
21 2 lvecdrng M LVec R DivRing
22 21 3ad2ant2 S 𝒫 B M LVec X S R DivRing
23 22 adantr S 𝒫 B M LVec X S F E S F X 0 ˙ finSupp 0 ˙ F R DivRing
24 3 4 5 drngunit R DivRing F X U F X E F X 0 ˙
25 23 24 syl S 𝒫 B M LVec X S F E S F X 0 ˙ finSupp 0 ˙ F F X U F X E F X 0 ˙
26 19 20 25 mpbir2and S 𝒫 B M LVec X S F E S F X 0 ˙ finSupp 0 ˙ F F X U
27 26 3adant3 S 𝒫 B M LVec X S F E S F X 0 ˙ finSupp 0 ˙ F F linC M S = Z F X U
28 simp3 F E S F X 0 ˙ finSupp 0 ˙ F finSupp 0 ˙ F
29 28 3ad2ant2 S 𝒫 B M LVec X S F E S F X 0 ˙ finSupp 0 ˙ F F linC M S = Z finSupp 0 ˙ F
30 simp3 S 𝒫 B M LVec X S F E S F X 0 ˙ finSupp 0 ˙ F F linC M S = Z F linC M S = Z
31 1 2 3 4 5 6 7 8 9 10 lincresunit3 S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F F linC M S = Z G linC M S X = X
32 13 14 27 29 30 31 syl131anc S 𝒫 B M LVec X S F E S F X 0 ˙ finSupp 0 ˙ F F linC M S = Z G linC M S X = X