| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lincresunit.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
lincresunit.r |
⊢ 𝑅 = ( Scalar ‘ 𝑀 ) |
| 3 |
|
lincresunit.e |
⊢ 𝐸 = ( Base ‘ 𝑅 ) |
| 4 |
|
lincresunit.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 5 |
|
lincresunit.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 6 |
|
lincresunit.z |
⊢ 𝑍 = ( 0g ‘ 𝑀 ) |
| 7 |
|
lincresunit.n |
⊢ 𝑁 = ( invg ‘ 𝑅 ) |
| 8 |
|
lincresunit.i |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
| 9 |
|
lincresunit.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 10 |
|
lincresunit.g |
⊢ 𝐺 = ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑠 ) ) ) |
| 11 |
|
simp2 |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → 𝑀 ∈ LMod ) |
| 12 |
11
|
3ad2ant1 |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → 𝑀 ∈ LMod ) |
| 13 |
|
simp1 |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) |
| 14 |
|
3simpa |
⊢ ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) → ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ) |
| 15 |
14
|
3ad2ant2 |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ) |
| 16 |
13 15
|
jca |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ) ) |
| 17 |
|
eldifi |
⊢ ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) → 𝑠 ∈ 𝑆 ) |
| 18 |
1 2 3 4 5 6 7 8 9 10
|
lincresunitlem2 |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑠 ) ) ∈ 𝐸 ) |
| 19 |
16 17 18
|
syl2an |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ∧ 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑠 ) ) ∈ 𝐸 ) |
| 20 |
2
|
fveq2i |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
| 21 |
3 20
|
eqtri |
⊢ 𝐸 = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
| 22 |
19 21
|
eleqtrdi |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ∧ 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑠 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 23 |
22 10
|
fmptd |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → 𝐺 : ( 𝑆 ∖ { 𝑋 } ) ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 24 |
|
fvex |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V |
| 25 |
|
difexg |
⊢ ( 𝑆 ∈ 𝒫 𝐵 → ( 𝑆 ∖ { 𝑋 } ) ∈ V ) |
| 26 |
25
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → ( 𝑆 ∖ { 𝑋 } ) ∈ V ) |
| 27 |
26
|
3ad2ant1 |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ( 𝑆 ∖ { 𝑋 } ) ∈ V ) |
| 28 |
|
elmapg |
⊢ ( ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∈ V ∧ ( 𝑆 ∖ { 𝑋 } ) ∈ V ) → ( 𝐺 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ( 𝑆 ∖ { 𝑋 } ) ) ↔ 𝐺 : ( 𝑆 ∖ { 𝑋 } ) ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
| 29 |
24 27 28
|
sylancr |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ( 𝐺 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ( 𝑆 ∖ { 𝑋 } ) ) ↔ 𝐺 : ( 𝑆 ∖ { 𝑋 } ) ⟶ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) ) |
| 30 |
23 29
|
mpbird |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → 𝐺 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) |
| 31 |
|
difexg |
⊢ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) → ( 𝑆 ∖ { 𝑋 } ) ∈ V ) |
| 32 |
31
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑆 ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑆 ∖ { 𝑋 } ) ∈ V ) |
| 33 |
|
ssdifss |
⊢ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) → ( 𝑆 ∖ { 𝑋 } ) ⊆ ( Base ‘ 𝑀 ) ) |
| 34 |
33
|
a1i |
⊢ ( 𝑋 ∈ 𝑆 → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) → ( 𝑆 ∖ { 𝑋 } ) ⊆ ( Base ‘ 𝑀 ) ) ) |
| 35 |
|
elpwi |
⊢ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) → 𝑆 ⊆ ( Base ‘ 𝑀 ) ) |
| 36 |
34 35
|
impel |
⊢ ( ( 𝑋 ∈ 𝑆 ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑆 ∖ { 𝑋 } ) ⊆ ( Base ‘ 𝑀 ) ) |
| 37 |
32 36
|
elpwd |
⊢ ( ( 𝑋 ∈ 𝑆 ∧ 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝑆 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
| 38 |
37
|
expcom |
⊢ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) → ( 𝑋 ∈ 𝑆 → ( 𝑆 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) |
| 39 |
1
|
pweqi |
⊢ 𝒫 𝐵 = 𝒫 ( Base ‘ 𝑀 ) |
| 40 |
38 39
|
eleq2s |
⊢ ( 𝑆 ∈ 𝒫 𝐵 → ( 𝑋 ∈ 𝑆 → ( 𝑆 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) |
| 41 |
40
|
imp |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑆 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
| 42 |
41
|
3adant2 |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → ( 𝑆 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
| 43 |
42
|
3ad2ant1 |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ( 𝑆 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
| 44 |
|
lincval |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝐺 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( 𝑆 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) = ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ) |
| 45 |
12 30 43 44
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) = ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ) |
| 46 |
|
simp1 |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → 𝑆 ∈ 𝒫 𝐵 ) |
| 47 |
|
simp3 |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) |
| 48 |
11 46 47
|
3jca |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆 ) ) |
| 49 |
48
|
adantr |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆 ) ) |
| 50 |
|
3simpb |
⊢ ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) → ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ 𝐹 finSupp 0 ) ) |
| 51 |
50
|
adantl |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ 𝐹 finSupp 0 ) ) |
| 52 |
|
eqidd |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) = ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ) |
| 53 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
| 54 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
| 55 |
1 2 3 53 54 5
|
lincdifsn |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ 𝐹 finSupp 0 ) ∧ ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) = ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = ( ( ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ( +g ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) ) |
| 56 |
49 51 52 55
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = ( ( ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ( +g ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) ) |
| 57 |
56
|
eqeq1d |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ↔ ( ( ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ( +g ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) = 𝑍 ) ) |
| 58 |
|
fveq2 |
⊢ ( 𝑠 = 𝑧 → ( 𝐺 ‘ 𝑠 ) = ( 𝐺 ‘ 𝑧 ) ) |
| 59 |
|
id |
⊢ ( 𝑠 = 𝑧 → 𝑠 = 𝑧 ) |
| 60 |
58 59
|
oveq12d |
⊢ ( 𝑠 = 𝑧 → ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) = ( ( 𝐺 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) |
| 61 |
60
|
cbvmptv |
⊢ ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) = ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) |
| 62 |
61
|
a1i |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) = ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) ) |
| 63 |
62
|
oveq2d |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) = ( 𝑀 Σg ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) ) ) |
| 64 |
63
|
oveq2d |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ) = ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( 𝑀 Σg ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) ) ) ) |
| 65 |
1 2 3 4 5 6 7 8 9 10
|
lincresunit3lem2 |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( 𝑀 Σg ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) ) ) = ( ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ) |
| 66 |
64 65
|
eqtr2d |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) = ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ) ) |
| 67 |
66
|
oveq1d |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( ( ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ( +g ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) = ( ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ) ( +g ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) ) |
| 68 |
67
|
eqeq1d |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( ( ( ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ( +g ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) = 𝑍 ↔ ( ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ) ( +g ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) = 𝑍 ) ) |
| 69 |
|
lmodgrp |
⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ Grp ) |
| 70 |
69
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → 𝑀 ∈ Grp ) |
| 71 |
70
|
adantr |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → 𝑀 ∈ Grp ) |
| 72 |
11
|
adantr |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → 𝑀 ∈ LMod ) |
| 73 |
|
elmapi |
⊢ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) → 𝐹 : 𝑆 ⟶ 𝐸 ) |
| 74 |
73
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) → 𝐹 : 𝑆 ⟶ 𝐸 ) |
| 75 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝑆 ⟶ 𝐸 ∧ 𝑋 ∈ 𝑆 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝐸 ) |
| 76 |
74 47 75
|
syl2anr |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝐸 ) |
| 77 |
|
elpwi |
⊢ ( 𝑆 ∈ 𝒫 𝐵 → 𝑆 ⊆ 𝐵 ) |
| 78 |
77
|
sselda |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝐵 ) |
| 79 |
78
|
3adant2 |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝐵 ) |
| 80 |
79
|
adantr |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → 𝑋 ∈ 𝐵 ) |
| 81 |
1 2 53 3
|
lmodvscl |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝐸 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ∈ 𝐵 ) |
| 82 |
72 76 80 81
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ∈ 𝐵 ) |
| 83 |
2
|
lmodfgrp |
⊢ ( 𝑀 ∈ LMod → 𝑅 ∈ Grp ) |
| 84 |
83
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → 𝑅 ∈ Grp ) |
| 85 |
3 7
|
grpinvcl |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝐸 ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ 𝐸 ) |
| 86 |
84 76 85
|
syl2an2r |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ 𝐸 ) |
| 87 |
|
lmodcmn |
⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ CMnd ) |
| 88 |
87
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → 𝑀 ∈ CMnd ) |
| 89 |
88
|
adantr |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → 𝑀 ∈ CMnd ) |
| 90 |
26
|
adantr |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝑆 ∖ { 𝑋 } ) ∈ V ) |
| 91 |
|
simpll2 |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) ∧ 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → 𝑀 ∈ LMod ) |
| 92 |
1 2 3 4 5 6 7 8 9 10
|
lincresunit1 |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ) → 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) |
| 93 |
92
|
3adantr3 |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) |
| 94 |
|
elmapi |
⊢ ( 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) → 𝐺 : ( 𝑆 ∖ { 𝑋 } ) ⟶ 𝐸 ) |
| 95 |
93 94
|
syl |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → 𝐺 : ( 𝑆 ∖ { 𝑋 } ) ⟶ 𝐸 ) |
| 96 |
95
|
ffvelcdmda |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) ∧ 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( 𝐺 ‘ 𝑠 ) ∈ 𝐸 ) |
| 97 |
|
ssel2 |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑠 ∈ 𝑆 ) → 𝑠 ∈ 𝐵 ) |
| 98 |
97
|
expcom |
⊢ ( 𝑠 ∈ 𝑆 → ( 𝑆 ⊆ 𝐵 → 𝑠 ∈ 𝐵 ) ) |
| 99 |
17 77 98
|
syl2imc |
⊢ ( 𝑆 ∈ 𝒫 𝐵 → ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) → 𝑠 ∈ 𝐵 ) ) |
| 100 |
99
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) → 𝑠 ∈ 𝐵 ) ) |
| 101 |
100
|
adantr |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) → 𝑠 ∈ 𝐵 ) ) |
| 102 |
101
|
imp |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) ∧ 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → 𝑠 ∈ 𝐵 ) |
| 103 |
1 2 53 3
|
lmodvscl |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝐺 ‘ 𝑠 ) ∈ 𝐸 ∧ 𝑠 ∈ 𝐵 ) → ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ 𝐵 ) |
| 104 |
91 96 102 103
|
syl3anc |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) ∧ 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ∈ 𝐵 ) |
| 105 |
104
|
fmpttd |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) : ( 𝑆 ∖ { 𝑋 } ) ⟶ 𝐵 ) |
| 106 |
25
|
adantr |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑆 ∖ { 𝑋 } ) ∈ V ) |
| 107 |
|
ssdifss |
⊢ ( 𝑆 ⊆ 𝐵 → ( 𝑆 ∖ { 𝑋 } ) ⊆ 𝐵 ) |
| 108 |
77 107
|
syl |
⊢ ( 𝑆 ∈ 𝒫 𝐵 → ( 𝑆 ∖ { 𝑋 } ) ⊆ 𝐵 ) |
| 109 |
108
|
adantr |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑆 ∖ { 𝑋 } ) ⊆ 𝐵 ) |
| 110 |
109 1
|
sseqtrdi |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑆 ∖ { 𝑋 } ) ⊆ ( Base ‘ 𝑀 ) ) |
| 111 |
106 110
|
elpwd |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑆 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
| 112 |
111
|
3adant2 |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → ( 𝑆 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
| 113 |
11 112
|
jca |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → ( 𝑀 ∈ LMod ∧ ( 𝑆 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) |
| 114 |
113
|
adantr |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝑀 ∈ LMod ∧ ( 𝑆 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) |
| 115 |
1 2 3 4 5 6 7 8 9 10
|
lincresunit2 |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → 𝐺 finSupp 0 ) |
| 116 |
115 5
|
breqtrdi |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → 𝐺 finSupp ( 0g ‘ 𝑅 ) ) |
| 117 |
2 3
|
scmfsupp |
⊢ ( ( ( 𝑀 ∈ LMod ∧ ( 𝑆 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ∧ 𝐺 finSupp ( 0g ‘ 𝑅 ) ) → ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) finSupp ( 0g ‘ 𝑀 ) ) |
| 118 |
114 93 116 117
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) finSupp ( 0g ‘ 𝑀 ) ) |
| 119 |
118 6
|
breqtrrdi |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) finSupp 𝑍 ) |
| 120 |
1 6 89 90 105 119
|
gsumcl |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ∈ 𝐵 ) |
| 121 |
1 2 53 3
|
lmodvscl |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ 𝐸 ∧ ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ∈ 𝐵 ) → ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ) ∈ 𝐵 ) |
| 122 |
72 86 120 121
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ) ∈ 𝐵 ) |
| 123 |
|
eqid |
⊢ ( invg ‘ 𝑀 ) = ( invg ‘ 𝑀 ) |
| 124 |
1 54 6 123
|
grpinvid2 |
⊢ ( ( 𝑀 ∈ Grp ∧ ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ∈ 𝐵 ∧ ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ) ∈ 𝐵 ) → ( ( ( invg ‘ 𝑀 ) ‘ ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) = ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ) ↔ ( ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ) ( +g ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) = 𝑍 ) ) |
| 125 |
71 82 122 124
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( ( ( invg ‘ 𝑀 ) ‘ ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) = ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ) ↔ ( ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ) ( +g ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) = 𝑍 ) ) |
| 126 |
1 2 53 123 3 7 72 80 76
|
lmodvsneg |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( ( invg ‘ 𝑀 ) ‘ ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) = ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) |
| 127 |
126
|
eqeq1d |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( ( ( invg ‘ 𝑀 ) ‘ ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) = ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ) ↔ ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ) ) ) |
| 128 |
|
simpr2 |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
| 129 |
1 2 3 4 7 53
|
lincresunit3lem3 |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) → ( ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ) ↔ 𝑋 = ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ) ) |
| 130 |
|
eqcom |
⊢ ( 𝑋 = ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ↔ ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) = 𝑋 ) |
| 131 |
129 130
|
bitrdi |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) → ( ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ) ↔ ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) = 𝑋 ) ) |
| 132 |
72 80 120 128 131
|
syl31anc |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ) ↔ ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) = 𝑋 ) ) |
| 133 |
132
|
biimpd |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) = ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ) → ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) = 𝑋 ) ) |
| 134 |
127 133
|
sylbid |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( ( ( invg ‘ 𝑀 ) ‘ ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) = ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ) → ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) = 𝑋 ) ) |
| 135 |
125 134
|
sylbird |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( ( ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) ) ( +g ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) = 𝑍 → ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) = 𝑋 ) ) |
| 136 |
68 135
|
sylbid |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( ( ( ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ( +g ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) ( ·𝑠 ‘ 𝑀 ) 𝑋 ) ) = 𝑍 → ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) = 𝑋 ) ) |
| 137 |
57 136
|
sylbid |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) = 𝑋 ) ) |
| 138 |
137
|
3impia |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ( 𝑀 Σg ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑠 ) ( ·𝑠 ‘ 𝑀 ) 𝑠 ) ) ) = 𝑋 ) |
| 139 |
45 138
|
eqtrd |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ( 𝐺 ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) = 𝑋 ) |