| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lincresunit.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
lincresunit.r |
⊢ 𝑅 = ( Scalar ‘ 𝑀 ) |
| 3 |
|
lincresunit.e |
⊢ 𝐸 = ( Base ‘ 𝑅 ) |
| 4 |
|
lincresunit.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 5 |
|
lincresunit.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 6 |
|
lincresunit.z |
⊢ 𝑍 = ( 0g ‘ 𝑀 ) |
| 7 |
|
lincresunit.n |
⊢ 𝑁 = ( invg ‘ 𝑅 ) |
| 8 |
|
lincresunit.i |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
| 9 |
|
lincresunit.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 10 |
|
lincresunit.g |
⊢ 𝐺 = ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑠 ) ) ) |
| 11 |
|
difexg |
⊢ ( 𝑆 ∈ 𝒫 𝐵 → ( 𝑆 ∖ { 𝑋 } ) ∈ V ) |
| 12 |
11
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → ( 𝑆 ∖ { 𝑋 } ) ∈ V ) |
| 13 |
12
|
adantl |
⊢ ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) → ( 𝑆 ∖ { 𝑋 } ) ∈ V ) |
| 14 |
13
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝐹 finSupp 0 ) → ( 𝑆 ∖ { 𝑋 } ) ∈ V ) |
| 15 |
|
mptexg |
⊢ ( ( 𝑆 ∖ { 𝑋 } ) ∈ V → ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑠 ) ) ) ∈ V ) |
| 16 |
10 15
|
eqeltrid |
⊢ ( ( 𝑆 ∖ { 𝑋 } ) ∈ V → 𝐺 ∈ V ) |
| 17 |
14 16
|
syl |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝐹 finSupp 0 ) → 𝐺 ∈ V ) |
| 18 |
10
|
funmpt2 |
⊢ Fun 𝐺 |
| 19 |
18
|
a1i |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝐹 finSupp 0 ) → Fun 𝐺 ) |
| 20 |
5
|
fvexi |
⊢ 0 ∈ V |
| 21 |
20
|
a1i |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝐹 finSupp 0 ) → 0 ∈ V ) |
| 22 |
|
simpr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝐹 finSupp 0 ) → 𝐹 finSupp 0 ) |
| 23 |
22
|
fsuppimpd |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝐹 finSupp 0 ) → ( 𝐹 supp 0 ) ∈ Fin ) |
| 24 |
|
simplr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) |
| 25 |
|
simpll |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ) |
| 26 |
|
eldifi |
⊢ ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) → 𝑠 ∈ 𝑆 ) |
| 27 |
26
|
adantl |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → 𝑠 ∈ 𝑆 ) |
| 28 |
1 2 3 4 5 6 7 8 9 10
|
lincresunitlem2 |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑠 ) ) ∈ 𝐸 ) |
| 29 |
24 25 27 28
|
syl21anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑠 ) ) ∈ 𝐸 ) |
| 30 |
29
|
ralrimiva |
⊢ ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) → ∀ 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑠 ) ) ∈ 𝐸 ) |
| 31 |
10
|
fnmpt |
⊢ ( ∀ 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑠 ) ) ∈ 𝐸 → 𝐺 Fn ( 𝑆 ∖ { 𝑋 } ) ) |
| 32 |
30 31
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) → 𝐺 Fn ( 𝑆 ∖ { 𝑋 } ) ) |
| 33 |
|
elmapfn |
⊢ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) → 𝐹 Fn 𝑆 ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) → 𝐹 Fn 𝑆 ) |
| 35 |
34
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) → 𝐹 Fn 𝑆 ) |
| 36 |
32 35
|
jca |
⊢ ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) → ( 𝐺 Fn ( 𝑆 ∖ { 𝑋 } ) ∧ 𝐹 Fn 𝑆 ) ) |
| 37 |
|
difssd |
⊢ ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) → ( 𝑆 ∖ { 𝑋 } ) ⊆ 𝑆 ) |
| 38 |
|
simpr1 |
⊢ ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) → 𝑆 ∈ 𝒫 𝐵 ) |
| 39 |
20
|
a1i |
⊢ ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) → 0 ∈ V ) |
| 40 |
37 38 39
|
3jca |
⊢ ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) → ( ( 𝑆 ∖ { 𝑋 } ) ⊆ 𝑆 ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 0 ∈ V ) ) |
| 41 |
|
fveq2 |
⊢ ( 𝑠 = 𝑥 → ( 𝐹 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 42 |
41
|
oveq2d |
⊢ ( 𝑠 = 𝑥 → ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑠 ) ) = ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑥 ) ) ) |
| 43 |
|
simplr |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 0 ) → 𝑥 ∈ ( 𝑆 ∖ { 𝑋 } ) ) |
| 44 |
|
simpllr |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 0 ) → ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) |
| 45 |
|
simpll |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ) |
| 46 |
45
|
adantr |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 0 ) → ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ) |
| 47 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝑆 ∖ { 𝑋 } ) → 𝑥 ∈ 𝑆 ) |
| 48 |
47
|
adantl |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → 𝑥 ∈ 𝑆 ) |
| 49 |
48
|
adantr |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 0 ) → 𝑥 ∈ 𝑆 ) |
| 50 |
1 2 3 4 5 6 7 8 9 10
|
lincresunitlem2 |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐸 ) |
| 51 |
44 46 49 50
|
syl21anc |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 0 ) → ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐸 ) |
| 52 |
10 42 43 51
|
fvmptd3 |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 0 ) → ( 𝐺 ‘ 𝑥 ) = ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑥 ) ) ) |
| 53 |
|
oveq2 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 0 → ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · 0 ) ) |
| 54 |
2
|
lmodring |
⊢ ( 𝑀 ∈ LMod → 𝑅 ∈ Ring ) |
| 55 |
54
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → 𝑅 ∈ Ring ) |
| 56 |
55
|
adantl |
⊢ ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) → 𝑅 ∈ Ring ) |
| 57 |
1 2 3 4 5 6 7 8 9 10
|
lincresunitlem1 |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ) → ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ∈ 𝐸 ) |
| 58 |
57
|
ancoms |
⊢ ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) → ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ∈ 𝐸 ) |
| 59 |
3 9 5
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) ∈ 𝐸 ) → ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · 0 ) = 0 ) |
| 60 |
56 58 59
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) → ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · 0 ) = 0 ) |
| 61 |
60
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · 0 ) = 0 ) |
| 62 |
53 61
|
sylan9eqr |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 0 ) → ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑥 ) ) = 0 ) |
| 63 |
52 62
|
eqtrd |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( 𝐹 ‘ 𝑥 ) = 0 ) → ( 𝐺 ‘ 𝑥 ) = 0 ) |
| 64 |
63
|
ex |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝑥 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( ( 𝐹 ‘ 𝑥 ) = 0 → ( 𝐺 ‘ 𝑥 ) = 0 ) ) |
| 65 |
64
|
ralrimiva |
⊢ ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) → ∀ 𝑥 ∈ ( 𝑆 ∖ { 𝑋 } ) ( ( 𝐹 ‘ 𝑥 ) = 0 → ( 𝐺 ‘ 𝑥 ) = 0 ) ) |
| 66 |
|
suppfnss |
⊢ ( ( ( 𝐺 Fn ( 𝑆 ∖ { 𝑋 } ) ∧ 𝐹 Fn 𝑆 ) ∧ ( ( 𝑆 ∖ { 𝑋 } ) ⊆ 𝑆 ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 0 ∈ V ) ) → ( ∀ 𝑥 ∈ ( 𝑆 ∖ { 𝑋 } ) ( ( 𝐹 ‘ 𝑥 ) = 0 → ( 𝐺 ‘ 𝑥 ) = 0 ) → ( 𝐺 supp 0 ) ⊆ ( 𝐹 supp 0 ) ) ) |
| 67 |
66
|
imp |
⊢ ( ( ( ( 𝐺 Fn ( 𝑆 ∖ { 𝑋 } ) ∧ 𝐹 Fn 𝑆 ) ∧ ( ( 𝑆 ∖ { 𝑋 } ) ⊆ 𝑆 ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 0 ∈ V ) ) ∧ ∀ 𝑥 ∈ ( 𝑆 ∖ { 𝑋 } ) ( ( 𝐹 ‘ 𝑥 ) = 0 → ( 𝐺 ‘ 𝑥 ) = 0 ) ) → ( 𝐺 supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
| 68 |
36 40 65 67
|
syl21anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) → ( 𝐺 supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
| 69 |
68
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝐹 finSupp 0 ) → ( 𝐺 supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
| 70 |
|
suppssfifsupp |
⊢ ( ( ( 𝐺 ∈ V ∧ Fun 𝐺 ∧ 0 ∈ V ) ∧ ( ( 𝐹 supp 0 ) ∈ Fin ∧ ( 𝐺 supp 0 ) ⊆ ( 𝐹 supp 0 ) ) ) → 𝐺 finSupp 0 ) |
| 71 |
17 19 21 23 69 70
|
syl32anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) ∧ 𝐹 finSupp 0 ) → 𝐺 finSupp 0 ) |
| 72 |
71
|
ex |
⊢ ( ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ∧ ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) → ( 𝐹 finSupp 0 → 𝐺 finSupp 0 ) ) |
| 73 |
72
|
ex |
⊢ ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) → ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → ( 𝐹 finSupp 0 → 𝐺 finSupp 0 ) ) ) |
| 74 |
73
|
com23 |
⊢ ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) → ( 𝐹 finSupp 0 → ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → 𝐺 finSupp 0 ) ) ) |
| 75 |
74
|
3impia |
⊢ ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) → ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → 𝐺 finSupp 0 ) ) |
| 76 |
75
|
impcom |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → 𝐺 finSupp 0 ) |