Step |
Hyp |
Ref |
Expression |
1 |
|
lincresunit.b |
|
2 |
|
lincresunit.r |
|
3 |
|
lincresunit.e |
|
4 |
|
lincresunit.u |
|
5 |
|
lincresunit.0 |
|
6 |
|
lincresunit.z |
|
7 |
|
lincresunit.n |
|
8 |
|
lincresunit.i |
|
9 |
|
lincresunit.t |
|
10 |
|
lincresunit.g |
|
11 |
|
difexg |
|
12 |
11
|
3ad2ant1 |
|
13 |
12
|
adantl |
|
14 |
13
|
adantr |
|
15 |
|
mptexg |
|
16 |
10 15
|
eqeltrid |
|
17 |
14 16
|
syl |
|
18 |
10
|
funmpt2 |
|
19 |
18
|
a1i |
|
20 |
5
|
fvexi |
|
21 |
20
|
a1i |
|
22 |
|
simpr |
|
23 |
22
|
fsuppimpd |
|
24 |
|
simplr |
|
25 |
|
simpll |
|
26 |
|
eldifi |
|
27 |
26
|
adantl |
|
28 |
1 2 3 4 5 6 7 8 9 10
|
lincresunitlem2 |
|
29 |
24 25 27 28
|
syl21anc |
|
30 |
29
|
ralrimiva |
|
31 |
10
|
fnmpt |
|
32 |
30 31
|
syl |
|
33 |
|
elmapfn |
|
34 |
33
|
adantr |
|
35 |
34
|
adantr |
|
36 |
32 35
|
jca |
|
37 |
|
difssd |
|
38 |
|
simpr1 |
|
39 |
20
|
a1i |
|
40 |
37 38 39
|
3jca |
|
41 |
|
fveq2 |
|
42 |
41
|
oveq2d |
|
43 |
|
simplr |
|
44 |
|
simpllr |
|
45 |
|
simpll |
|
46 |
45
|
adantr |
|
47 |
|
eldifi |
|
48 |
47
|
adantl |
|
49 |
48
|
adantr |
|
50 |
1 2 3 4 5 6 7 8 9 10
|
lincresunitlem2 |
|
51 |
44 46 49 50
|
syl21anc |
|
52 |
10 42 43 51
|
fvmptd3 |
|
53 |
|
oveq2 |
|
54 |
2
|
lmodring |
|
55 |
54
|
3ad2ant2 |
|
56 |
55
|
adantl |
|
57 |
1 2 3 4 5 6 7 8 9 10
|
lincresunitlem1 |
|
58 |
57
|
ancoms |
|
59 |
3 9 5
|
ringrz |
|
60 |
56 58 59
|
syl2anc |
|
61 |
60
|
adantr |
|
62 |
53 61
|
sylan9eqr |
|
63 |
52 62
|
eqtrd |
|
64 |
63
|
ex |
|
65 |
64
|
ralrimiva |
|
66 |
|
suppfnss |
|
67 |
66
|
imp |
|
68 |
36 40 65 67
|
syl21anc |
|
69 |
68
|
adantr |
|
70 |
|
suppssfifsupp |
|
71 |
17 19 21 23 69 70
|
syl32anc |
|
72 |
71
|
ex |
|
73 |
72
|
ex |
|
74 |
73
|
com23 |
|
75 |
74
|
3impia |
|
76 |
75
|
impcom |
|