Metamath Proof Explorer


Theorem lincresunit2

Description: Property 2 of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019)

Ref Expression
Hypotheses lincresunit.b B = Base M
lincresunit.r R = Scalar M
lincresunit.e E = Base R
lincresunit.u U = Unit R
lincresunit.0 0 ˙ = 0 R
lincresunit.z Z = 0 M
lincresunit.n N = inv g R
lincresunit.i I = inv r R
lincresunit.t · ˙ = R
lincresunit.g G = s S X I N F X · ˙ F s
Assertion lincresunit2 S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F finSupp 0 ˙ G

Proof

Step Hyp Ref Expression
1 lincresunit.b B = Base M
2 lincresunit.r R = Scalar M
3 lincresunit.e E = Base R
4 lincresunit.u U = Unit R
5 lincresunit.0 0 ˙ = 0 R
6 lincresunit.z Z = 0 M
7 lincresunit.n N = inv g R
8 lincresunit.i I = inv r R
9 lincresunit.t · ˙ = R
10 lincresunit.g G = s S X I N F X · ˙ F s
11 difexg S 𝒫 B S X V
12 11 3ad2ant1 S 𝒫 B M LMod X S S X V
13 12 adantl F E S F X U S 𝒫 B M LMod X S S X V
14 13 adantr F E S F X U S 𝒫 B M LMod X S finSupp 0 ˙ F S X V
15 mptexg S X V s S X I N F X · ˙ F s V
16 10 15 eqeltrid S X V G V
17 14 16 syl F E S F X U S 𝒫 B M LMod X S finSupp 0 ˙ F G V
18 10 funmpt2 Fun G
19 18 a1i F E S F X U S 𝒫 B M LMod X S finSupp 0 ˙ F Fun G
20 5 fvexi 0 ˙ V
21 20 a1i F E S F X U S 𝒫 B M LMod X S finSupp 0 ˙ F 0 ˙ V
22 simpr F E S F X U S 𝒫 B M LMod X S finSupp 0 ˙ F finSupp 0 ˙ F
23 22 fsuppimpd F E S F X U S 𝒫 B M LMod X S finSupp 0 ˙ F F supp 0 ˙ Fin
24 simplr F E S F X U S 𝒫 B M LMod X S s S X S 𝒫 B M LMod X S
25 simpll F E S F X U S 𝒫 B M LMod X S s S X F E S F X U
26 eldifi s S X s S
27 26 adantl F E S F X U S 𝒫 B M LMod X S s S X s S
28 1 2 3 4 5 6 7 8 9 10 lincresunitlem2 S 𝒫 B M LMod X S F E S F X U s S I N F X · ˙ F s E
29 24 25 27 28 syl21anc F E S F X U S 𝒫 B M LMod X S s S X I N F X · ˙ F s E
30 29 ralrimiva F E S F X U S 𝒫 B M LMod X S s S X I N F X · ˙ F s E
31 10 fnmpt s S X I N F X · ˙ F s E G Fn S X
32 30 31 syl F E S F X U S 𝒫 B M LMod X S G Fn S X
33 elmapfn F E S F Fn S
34 33 adantr F E S F X U F Fn S
35 34 adantr F E S F X U S 𝒫 B M LMod X S F Fn S
36 32 35 jca F E S F X U S 𝒫 B M LMod X S G Fn S X F Fn S
37 difssd F E S F X U S 𝒫 B M LMod X S S X S
38 simpr1 F E S F X U S 𝒫 B M LMod X S S 𝒫 B
39 20 a1i F E S F X U S 𝒫 B M LMod X S 0 ˙ V
40 37 38 39 3jca F E S F X U S 𝒫 B M LMod X S S X S S 𝒫 B 0 ˙ V
41 fveq2 s = x F s = F x
42 41 oveq2d s = x I N F X · ˙ F s = I N F X · ˙ F x
43 simplr F E S F X U S 𝒫 B M LMod X S x S X F x = 0 ˙ x S X
44 simpllr F E S F X U S 𝒫 B M LMod X S x S X F x = 0 ˙ S 𝒫 B M LMod X S
45 simpll F E S F X U S 𝒫 B M LMod X S x S X F E S F X U
46 45 adantr F E S F X U S 𝒫 B M LMod X S x S X F x = 0 ˙ F E S F X U
47 eldifi x S X x S
48 47 adantl F E S F X U S 𝒫 B M LMod X S x S X x S
49 48 adantr F E S F X U S 𝒫 B M LMod X S x S X F x = 0 ˙ x S
50 1 2 3 4 5 6 7 8 9 10 lincresunitlem2 S 𝒫 B M LMod X S F E S F X U x S I N F X · ˙ F x E
51 44 46 49 50 syl21anc F E S F X U S 𝒫 B M LMod X S x S X F x = 0 ˙ I N F X · ˙ F x E
52 10 42 43 51 fvmptd3 F E S F X U S 𝒫 B M LMod X S x S X F x = 0 ˙ G x = I N F X · ˙ F x
53 oveq2 F x = 0 ˙ I N F X · ˙ F x = I N F X · ˙ 0 ˙
54 2 lmodring M LMod R Ring
55 54 3ad2ant2 S 𝒫 B M LMod X S R Ring
56 55 adantl F E S F X U S 𝒫 B M LMod X S R Ring
57 1 2 3 4 5 6 7 8 9 10 lincresunitlem1 S 𝒫 B M LMod X S F E S F X U I N F X E
58 57 ancoms F E S F X U S 𝒫 B M LMod X S I N F X E
59 3 9 5 ringrz R Ring I N F X E I N F X · ˙ 0 ˙ = 0 ˙
60 56 58 59 syl2anc F E S F X U S 𝒫 B M LMod X S I N F X · ˙ 0 ˙ = 0 ˙
61 60 adantr F E S F X U S 𝒫 B M LMod X S x S X I N F X · ˙ 0 ˙ = 0 ˙
62 53 61 sylan9eqr F E S F X U S 𝒫 B M LMod X S x S X F x = 0 ˙ I N F X · ˙ F x = 0 ˙
63 52 62 eqtrd F E S F X U S 𝒫 B M LMod X S x S X F x = 0 ˙ G x = 0 ˙
64 63 ex F E S F X U S 𝒫 B M LMod X S x S X F x = 0 ˙ G x = 0 ˙
65 64 ralrimiva F E S F X U S 𝒫 B M LMod X S x S X F x = 0 ˙ G x = 0 ˙
66 suppfnss G Fn S X F Fn S S X S S 𝒫 B 0 ˙ V x S X F x = 0 ˙ G x = 0 ˙ G supp 0 ˙ F supp 0 ˙
67 66 imp G Fn S X F Fn S S X S S 𝒫 B 0 ˙ V x S X F x = 0 ˙ G x = 0 ˙ G supp 0 ˙ F supp 0 ˙
68 36 40 65 67 syl21anc F E S F X U S 𝒫 B M LMod X S G supp 0 ˙ F supp 0 ˙
69 68 adantr F E S F X U S 𝒫 B M LMod X S finSupp 0 ˙ F G supp 0 ˙ F supp 0 ˙
70 suppssfifsupp G V Fun G 0 ˙ V F supp 0 ˙ Fin G supp 0 ˙ F supp 0 ˙ finSupp 0 ˙ G
71 17 19 21 23 69 70 syl32anc F E S F X U S 𝒫 B M LMod X S finSupp 0 ˙ F finSupp 0 ˙ G
72 71 ex F E S F X U S 𝒫 B M LMod X S finSupp 0 ˙ F finSupp 0 ˙ G
73 72 ex F E S F X U S 𝒫 B M LMod X S finSupp 0 ˙ F finSupp 0 ˙ G
74 73 com23 F E S F X U finSupp 0 ˙ F S 𝒫 B M LMod X S finSupp 0 ˙ G
75 74 3impia F E S F X U finSupp 0 ˙ F S 𝒫 B M LMod X S finSupp 0 ˙ G
76 75 impcom S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F finSupp 0 ˙ G