| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lincresunit.b |
|
| 2 |
|
lincresunit.r |
|
| 3 |
|
lincresunit.e |
|
| 4 |
|
lincresunit.u |
|
| 5 |
|
lincresunit.0 |
|
| 6 |
|
lincresunit.z |
|
| 7 |
|
lincresunit.n |
|
| 8 |
|
lincresunit.i |
|
| 9 |
|
lincresunit.t |
|
| 10 |
|
lincresunit.g |
|
| 11 |
|
difexg |
|
| 12 |
11
|
3ad2ant1 |
|
| 13 |
12
|
adantl |
|
| 14 |
13
|
adantr |
|
| 15 |
|
mptexg |
|
| 16 |
10 15
|
eqeltrid |
|
| 17 |
14 16
|
syl |
|
| 18 |
10
|
funmpt2 |
|
| 19 |
18
|
a1i |
|
| 20 |
5
|
fvexi |
|
| 21 |
20
|
a1i |
|
| 22 |
|
simpr |
|
| 23 |
22
|
fsuppimpd |
|
| 24 |
|
simplr |
|
| 25 |
|
simpll |
|
| 26 |
|
eldifi |
|
| 27 |
26
|
adantl |
|
| 28 |
1 2 3 4 5 6 7 8 9 10
|
lincresunitlem2 |
|
| 29 |
24 25 27 28
|
syl21anc |
|
| 30 |
29
|
ralrimiva |
|
| 31 |
10
|
fnmpt |
|
| 32 |
30 31
|
syl |
|
| 33 |
|
elmapfn |
|
| 34 |
33
|
adantr |
|
| 35 |
34
|
adantr |
|
| 36 |
32 35
|
jca |
|
| 37 |
|
difssd |
|
| 38 |
|
simpr1 |
|
| 39 |
20
|
a1i |
|
| 40 |
37 38 39
|
3jca |
|
| 41 |
|
fveq2 |
|
| 42 |
41
|
oveq2d |
|
| 43 |
|
simplr |
|
| 44 |
|
simpllr |
|
| 45 |
|
simpll |
|
| 46 |
45
|
adantr |
|
| 47 |
|
eldifi |
|
| 48 |
47
|
adantl |
|
| 49 |
48
|
adantr |
|
| 50 |
1 2 3 4 5 6 7 8 9 10
|
lincresunitlem2 |
|
| 51 |
44 46 49 50
|
syl21anc |
|
| 52 |
10 42 43 51
|
fvmptd3 |
|
| 53 |
|
oveq2 |
|
| 54 |
2
|
lmodring |
|
| 55 |
54
|
3ad2ant2 |
|
| 56 |
55
|
adantl |
|
| 57 |
1 2 3 4 5 6 7 8 9 10
|
lincresunitlem1 |
|
| 58 |
57
|
ancoms |
|
| 59 |
3 9 5
|
ringrz |
|
| 60 |
56 58 59
|
syl2anc |
|
| 61 |
60
|
adantr |
|
| 62 |
53 61
|
sylan9eqr |
|
| 63 |
52 62
|
eqtrd |
|
| 64 |
63
|
ex |
|
| 65 |
64
|
ralrimiva |
|
| 66 |
|
suppfnss |
|
| 67 |
66
|
imp |
|
| 68 |
36 40 65 67
|
syl21anc |
|
| 69 |
68
|
adantr |
|
| 70 |
|
suppssfifsupp |
|
| 71 |
17 19 21 23 69 70
|
syl32anc |
|
| 72 |
71
|
ex |
|
| 73 |
72
|
ex |
|
| 74 |
73
|
com23 |
|
| 75 |
74
|
3impia |
|
| 76 |
75
|
impcom |
|