Step |
Hyp |
Ref |
Expression |
1 |
|
lincresunit.b |
|
2 |
|
lincresunit.r |
|
3 |
|
lincresunit.e |
|
4 |
|
lincresunit.u |
|
5 |
|
lincresunit.0 |
|
6 |
|
lincresunit.z |
|
7 |
|
lincresunit.n |
|
8 |
|
lincresunit.i |
|
9 |
|
lincresunit.t |
|
10 |
|
lincresunit.g |
|
11 |
|
fveq2 |
|
12 |
11
|
oveq2d |
|
13 |
|
simpr3 |
|
14 |
|
ovexd |
|
15 |
10 12 13 14
|
fvmptd3 |
|
16 |
15
|
oveq1d |
|
17 |
16
|
oveq2d |
|
18 |
|
simp2 |
|
19 |
18
|
adantr |
|
20 |
2
|
lmodfgrp |
|
21 |
20
|
3ad2ant2 |
|
22 |
3 4
|
unitcl |
|
23 |
22
|
3ad2ant2 |
|
24 |
3 7
|
grpinvcl |
|
25 |
21 23 24
|
syl2an |
|
26 |
|
3simpa |
|
27 |
26
|
anim2i |
|
28 |
|
eldifi |
|
29 |
28
|
3ad2ant3 |
|
30 |
29
|
adantl |
|
31 |
1 2 3 4 5 6 7 8 9 10
|
lincresunitlem2 |
|
32 |
27 30 31
|
syl2anc |
|
33 |
|
elpwi |
|
34 |
33
|
sseld |
|
35 |
28 34
|
syl5com |
|
36 |
35
|
3ad2ant3 |
|
37 |
36
|
com12 |
|
38 |
37
|
3ad2ant1 |
|
39 |
38
|
imp |
|
40 |
|
eqid |
|
41 |
1 2 40 3 9
|
lmodvsass |
|
42 |
41
|
eqcomd |
|
43 |
19 25 32 39 42
|
syl13anc |
|
44 |
2
|
lmodring |
|
45 |
44
|
3ad2ant2 |
|
46 |
45
|
adantr |
|
47 |
|
elmapi |
|
48 |
|
ffvelrn |
|
49 |
47 28 48
|
syl2an |
|
50 |
49
|
3adant2 |
|
51 |
50
|
adantl |
|
52 |
|
simp2 |
|
53 |
52
|
adantl |
|
54 |
3 4 7 8 9
|
invginvrid |
|
55 |
46 51 53 54
|
syl3anc |
|
56 |
55
|
oveq1d |
|
57 |
17 43 56
|
3eqtrd |
|