Metamath Proof Explorer


Theorem lincresunit3lem1

Description: Lemma 1 for lincresunit3 . (Contributed by AV, 17-May-2019)

Ref Expression
Hypotheses lincresunit.b B = Base M
lincresunit.r R = Scalar M
lincresunit.e E = Base R
lincresunit.u U = Unit R
lincresunit.0 0 ˙ = 0 R
lincresunit.z Z = 0 M
lincresunit.n N = inv g R
lincresunit.i I = inv r R
lincresunit.t · ˙ = R
lincresunit.g G = s S X I N F X · ˙ F s
Assertion lincresunit3lem1 S 𝒫 B M LMod X S F E S F X U z S X N F X M G z M z = F z M z

Proof

Step Hyp Ref Expression
1 lincresunit.b B = Base M
2 lincresunit.r R = Scalar M
3 lincresunit.e E = Base R
4 lincresunit.u U = Unit R
5 lincresunit.0 0 ˙ = 0 R
6 lincresunit.z Z = 0 M
7 lincresunit.n N = inv g R
8 lincresunit.i I = inv r R
9 lincresunit.t · ˙ = R
10 lincresunit.g G = s S X I N F X · ˙ F s
11 fveq2 s = z F s = F z
12 11 oveq2d s = z I N F X · ˙ F s = I N F X · ˙ F z
13 simpr3 S 𝒫 B M LMod X S F E S F X U z S X z S X
14 ovexd S 𝒫 B M LMod X S F E S F X U z S X I N F X · ˙ F z V
15 10 12 13 14 fvmptd3 S 𝒫 B M LMod X S F E S F X U z S X G z = I N F X · ˙ F z
16 15 oveq1d S 𝒫 B M LMod X S F E S F X U z S X G z M z = I N F X · ˙ F z M z
17 16 oveq2d S 𝒫 B M LMod X S F E S F X U z S X N F X M G z M z = N F X M I N F X · ˙ F z M z
18 simp2 S 𝒫 B M LMod X S M LMod
19 18 adantr S 𝒫 B M LMod X S F E S F X U z S X M LMod
20 2 lmodfgrp M LMod R Grp
21 20 3ad2ant2 S 𝒫 B M LMod X S R Grp
22 3 4 unitcl F X U F X E
23 22 3ad2ant2 F E S F X U z S X F X E
24 3 7 grpinvcl R Grp F X E N F X E
25 21 23 24 syl2an S 𝒫 B M LMod X S F E S F X U z S X N F X E
26 3simpa F E S F X U z S X F E S F X U
27 26 anim2i S 𝒫 B M LMod X S F E S F X U z S X S 𝒫 B M LMod X S F E S F X U
28 eldifi z S X z S
29 28 3ad2ant3 F E S F X U z S X z S
30 29 adantl S 𝒫 B M LMod X S F E S F X U z S X z S
31 1 2 3 4 5 6 7 8 9 10 lincresunitlem2 S 𝒫 B M LMod X S F E S F X U z S I N F X · ˙ F z E
32 27 30 31 syl2anc S 𝒫 B M LMod X S F E S F X U z S X I N F X · ˙ F z E
33 elpwi S 𝒫 B S B
34 33 sseld S 𝒫 B z S z B
35 28 34 syl5com z S X S 𝒫 B z B
36 35 3ad2ant3 F E S F X U z S X S 𝒫 B z B
37 36 com12 S 𝒫 B F E S F X U z S X z B
38 37 3ad2ant1 S 𝒫 B M LMod X S F E S F X U z S X z B
39 38 imp S 𝒫 B M LMod X S F E S F X U z S X z B
40 eqid M = M
41 1 2 40 3 9 lmodvsass M LMod N F X E I N F X · ˙ F z E z B N F X · ˙ I N F X · ˙ F z M z = N F X M I N F X · ˙ F z M z
42 41 eqcomd M LMod N F X E I N F X · ˙ F z E z B N F X M I N F X · ˙ F z M z = N F X · ˙ I N F X · ˙ F z M z
43 19 25 32 39 42 syl13anc S 𝒫 B M LMod X S F E S F X U z S X N F X M I N F X · ˙ F z M z = N F X · ˙ I N F X · ˙ F z M z
44 2 lmodring M LMod R Ring
45 44 3ad2ant2 S 𝒫 B M LMod X S R Ring
46 45 adantr S 𝒫 B M LMod X S F E S F X U z S X R Ring
47 elmapi F E S F : S E
48 ffvelrn F : S E z S F z E
49 47 28 48 syl2an F E S z S X F z E
50 49 3adant2 F E S F X U z S X F z E
51 50 adantl S 𝒫 B M LMod X S F E S F X U z S X F z E
52 simp2 F E S F X U z S X F X U
53 52 adantl S 𝒫 B M LMod X S F E S F X U z S X F X U
54 3 4 7 8 9 invginvrid R Ring F z E F X U N F X · ˙ I N F X · ˙ F z = F z
55 46 51 53 54 syl3anc S 𝒫 B M LMod X S F E S F X U z S X N F X · ˙ I N F X · ˙ F z = F z
56 55 oveq1d S 𝒫 B M LMod X S F E S F X U z S X N F X · ˙ I N F X · ˙ F z M z = F z M z
57 17 43 56 3eqtrd S 𝒫 B M LMod X S F E S F X U z S X N F X M G z M z = F z M z