Metamath Proof Explorer


Theorem lincresunit3lem2

Description: Lemma 2 for lincresunit3 . (Contributed by AV, 18-May-2019) (Proof shortened by AV, 30-Jul-2019)

Ref Expression
Hypotheses lincresunit.b B = Base M
lincresunit.r R = Scalar M
lincresunit.e E = Base R
lincresunit.u U = Unit R
lincresunit.0 0 ˙ = 0 R
lincresunit.z Z = 0 M
lincresunit.n N = inv g R
lincresunit.i I = inv r R
lincresunit.t · ˙ = R
lincresunit.g G = s S X I N F X · ˙ F s
Assertion lincresunit3lem2 S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F N F X M M z S X G z M z = F S X linC M S X

Proof

Step Hyp Ref Expression
1 lincresunit.b B = Base M
2 lincresunit.r R = Scalar M
3 lincresunit.e E = Base R
4 lincresunit.u U = Unit R
5 lincresunit.0 0 ˙ = 0 R
6 lincresunit.z Z = 0 M
7 lincresunit.n N = inv g R
8 lincresunit.i I = inv r R
9 lincresunit.t · ˙ = R
10 lincresunit.g G = s S X I N F X · ˙ F s
11 simpl2 S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F M LMod
12 2 fveq2i Base R = Base Scalar M
13 3 12 eqtri E = Base Scalar M
14 13 oveq1i E S = Base Scalar M S
15 14 eleq2i F E S F Base Scalar M S
16 15 biimpi F E S F Base Scalar M S
17 16 3ad2ant1 F E S F X U finSupp 0 ˙ F F Base Scalar M S
18 17 adantl S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F F Base Scalar M S
19 difssd S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F S X S
20 elmapssres F Base Scalar M S S X S F S X Base Scalar M S X
21 18 19 20 syl2anc S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F F S X Base Scalar M S X
22 elpwi S 𝒫 Base M S Base M
23 22 ssdifssd S 𝒫 Base M S X Base M
24 difexg S 𝒫 Base M S X V
25 elpwg S X V S X 𝒫 Base M S X Base M
26 24 25 syl S 𝒫 Base M S X 𝒫 Base M S X Base M
27 23 26 mpbird S 𝒫 Base M S X 𝒫 Base M
28 1 pweqi 𝒫 B = 𝒫 Base M
29 27 28 eleq2s S 𝒫 B S X 𝒫 Base M
30 29 3ad2ant1 S 𝒫 B M LMod X S S X 𝒫 Base M
31 30 adantr S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F S X 𝒫 Base M
32 lincval M LMod F S X Base Scalar M S X S X 𝒫 Base M F S X linC M S X = M z S X F S X z M z
33 11 21 31 32 syl3anc S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F F S X linC M S X = M z S X F S X z M z
34 simpll S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F z S X S 𝒫 B M LMod X S
35 simplr1 S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F z S X F E S
36 simplr2 S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F z S X F X U
37 simpr S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F z S X z S X
38 1 2 3 4 5 6 7 8 9 10 lincresunit3lem1 S 𝒫 B M LMod X S F E S F X U z S X N F X M G z M z = F z M z
39 34 35 36 37 38 syl13anc S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F z S X N F X M G z M z = F z M z
40 fvres z S X F S X z = F z
41 40 adantl S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F z S X F S X z = F z
42 41 eqcomd S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F z S X F z = F S X z
43 42 oveq1d S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F z S X F z M z = F S X z M z
44 39 43 eqtrd S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F z S X N F X M G z M z = F S X z M z
45 44 mpteq2dva S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F z S X N F X M G z M z = z S X F S X z M z
46 45 oveq2d S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F M z S X N F X M G z M z = M z S X F S X z M z
47 eqid + M = + M
48 eqid M = M
49 difexg S 𝒫 B S X V
50 49 3ad2ant1 S 𝒫 B M LMod X S S X V
51 50 adantr S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F S X V
52 2 lmodfgrp M LMod R Grp
53 52 3ad2ant2 S 𝒫 B M LMod X S R Grp
54 53 adantr S 𝒫 B M LMod X S F E S R Grp
55 elmapi F E S F : S E
56 ffvelrn F : S E X S F X E
57 56 expcom X S F : S E F X E
58 57 3ad2ant3 S 𝒫 B M LMod X S F : S E F X E
59 55 58 syl5com F E S S 𝒫 B M LMod X S F X E
60 59 impcom S 𝒫 B M LMod X S F E S F X E
61 3 7 grpinvcl R Grp F X E N F X E
62 54 60 61 syl2anc S 𝒫 B M LMod X S F E S N F X E
63 62 3ad2antr1 S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F N F X E
64 11 adantr S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F z S X M LMod
65 1 2 3 4 5 6 7 8 9 10 lincresunit1 S 𝒫 B M LMod X S F E S F X U G E S X
66 65 3adantr3 S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F G E S X
67 elmapi G E S X G : S X E
68 ffvelrn G : S X E z S X G z E
69 68 ex G : S X E z S X G z E
70 66 67 69 3syl S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F z S X G z E
71 70 imp S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F z S X G z E
72 elpwi S 𝒫 B S B
73 eldifi z S X z S
74 ssel2 S B z S z B
75 74 expcom z S S B z B
76 73 75 syl z S X S B z B
77 72 76 syl5com S 𝒫 B z S X z B
78 77 3ad2ant1 S 𝒫 B M LMod X S z S X z B
79 78 adantr S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F z S X z B
80 79 imp S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F z S X z B
81 1 2 48 3 lmodvscl M LMod G z E z B G z M z B
82 64 71 80 81 syl3anc S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F z S X G z M z B
83 simp2 S 𝒫 B M LMod X S M LMod
84 83 30 jca S 𝒫 B M LMod X S M LMod S X 𝒫 Base M
85 84 adantr S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F M LMod S X 𝒫 Base M
86 1 2 3 4 5 6 7 8 9 10 lincresunit2 S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F finSupp 0 ˙ G
87 86 5 breqtrdi S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F finSupp 0 R G
88 2 3 scmfsupp M LMod S X 𝒫 Base M G E S X finSupp 0 R G finSupp 0 M z S X G z M z
89 88 6 breqtrrdi M LMod S X 𝒫 Base M G E S X finSupp 0 R G finSupp Z z S X G z M z
90 85 66 87 89 syl3anc S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F finSupp Z z S X G z M z
91 1 2 3 6 47 48 11 51 63 82 90 gsumvsmul S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F M z S X N F X M G z M z = N F X M M z S X G z M z
92 33 46 91 3eqtr2rd S 𝒫 B M LMod X S F E S F X U finSupp 0 ˙ F N F X M M z S X G z M z = F S X linC M S X