Step |
Hyp |
Ref |
Expression |
1 |
|
lincresunit.b |
|
2 |
|
lincresunit.r |
|
3 |
|
lincresunit.e |
|
4 |
|
lincresunit.u |
|
5 |
|
lincresunit.0 |
|
6 |
|
lincresunit.z |
|
7 |
|
lincresunit.n |
|
8 |
|
lincresunit.i |
|
9 |
|
lincresunit.t |
|
10 |
|
lincresunit.g |
|
11 |
|
simpl2 |
|
12 |
2
|
fveq2i |
|
13 |
3 12
|
eqtri |
|
14 |
13
|
oveq1i |
|
15 |
14
|
eleq2i |
|
16 |
15
|
biimpi |
|
17 |
16
|
3ad2ant1 |
|
18 |
17
|
adantl |
|
19 |
|
difssd |
|
20 |
|
elmapssres |
|
21 |
18 19 20
|
syl2anc |
|
22 |
|
elpwi |
|
23 |
22
|
ssdifssd |
|
24 |
|
difexg |
|
25 |
|
elpwg |
|
26 |
24 25
|
syl |
|
27 |
23 26
|
mpbird |
|
28 |
1
|
pweqi |
|
29 |
27 28
|
eleq2s |
|
30 |
29
|
3ad2ant1 |
|
31 |
30
|
adantr |
|
32 |
|
lincval |
|
33 |
11 21 31 32
|
syl3anc |
|
34 |
|
simpll |
|
35 |
|
simplr1 |
|
36 |
|
simplr2 |
|
37 |
|
simpr |
|
38 |
1 2 3 4 5 6 7 8 9 10
|
lincresunit3lem1 |
|
39 |
34 35 36 37 38
|
syl13anc |
|
40 |
|
fvres |
|
41 |
40
|
adantl |
|
42 |
41
|
eqcomd |
|
43 |
42
|
oveq1d |
|
44 |
39 43
|
eqtrd |
|
45 |
44
|
mpteq2dva |
|
46 |
45
|
oveq2d |
|
47 |
|
eqid |
|
48 |
|
eqid |
|
49 |
|
difexg |
|
50 |
49
|
3ad2ant1 |
|
51 |
50
|
adantr |
|
52 |
2
|
lmodfgrp |
|
53 |
52
|
3ad2ant2 |
|
54 |
53
|
adantr |
|
55 |
|
elmapi |
|
56 |
|
ffvelrn |
|
57 |
56
|
expcom |
|
58 |
57
|
3ad2ant3 |
|
59 |
55 58
|
syl5com |
|
60 |
59
|
impcom |
|
61 |
3 7
|
grpinvcl |
|
62 |
54 60 61
|
syl2anc |
|
63 |
62
|
3ad2antr1 |
|
64 |
11
|
adantr |
|
65 |
1 2 3 4 5 6 7 8 9 10
|
lincresunit1 |
|
66 |
65
|
3adantr3 |
|
67 |
|
elmapi |
|
68 |
|
ffvelrn |
|
69 |
68
|
ex |
|
70 |
66 67 69
|
3syl |
|
71 |
70
|
imp |
|
72 |
|
elpwi |
|
73 |
|
eldifi |
|
74 |
|
ssel2 |
|
75 |
74
|
expcom |
|
76 |
73 75
|
syl |
|
77 |
72 76
|
syl5com |
|
78 |
77
|
3ad2ant1 |
|
79 |
78
|
adantr |
|
80 |
79
|
imp |
|
81 |
1 2 48 3
|
lmodvscl |
|
82 |
64 71 80 81
|
syl3anc |
|
83 |
|
simp2 |
|
84 |
83 30
|
jca |
|
85 |
84
|
adantr |
|
86 |
1 2 3 4 5 6 7 8 9 10
|
lincresunit2 |
|
87 |
86 5
|
breqtrdi |
|
88 |
2 3
|
scmfsupp |
|
89 |
88 6
|
breqtrrdi |
|
90 |
85 66 87 89
|
syl3anc |
|
91 |
1 2 3 6 47 48 11 51 63 82 90
|
gsumvsmul |
|
92 |
33 46 91
|
3eqtr2rd |
|