| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lincresunit.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
lincresunit.r |
⊢ 𝑅 = ( Scalar ‘ 𝑀 ) |
| 3 |
|
lincresunit.e |
⊢ 𝐸 = ( Base ‘ 𝑅 ) |
| 4 |
|
lincresunit.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 5 |
|
lincresunit.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 6 |
|
lincresunit.z |
⊢ 𝑍 = ( 0g ‘ 𝑀 ) |
| 7 |
|
lincresunit.n |
⊢ 𝑁 = ( invg ‘ 𝑅 ) |
| 8 |
|
lincresunit.i |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
| 9 |
|
lincresunit.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 10 |
|
lincresunit.g |
⊢ 𝐺 = ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑠 ) ) ) |
| 11 |
|
simpl2 |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → 𝑀 ∈ LMod ) |
| 12 |
2
|
fveq2i |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
| 13 |
3 12
|
eqtri |
⊢ 𝐸 = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
| 14 |
13
|
oveq1i |
⊢ ( 𝐸 ↑m 𝑆 ) = ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) |
| 15 |
14
|
eleq2i |
⊢ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ↔ 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) ) |
| 16 |
15
|
biimpi |
⊢ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) → 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) ) |
| 17 |
16
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) → 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) ) |
| 18 |
17
|
adantl |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) ) |
| 19 |
|
difssd |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝑆 ∖ { 𝑋 } ) ⊆ 𝑆 ) |
| 20 |
|
elmapssres |
⊢ ( ( 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) ∧ ( 𝑆 ∖ { 𝑋 } ) ⊆ 𝑆 ) → ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) |
| 21 |
18 19 20
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) |
| 22 |
|
elpwi |
⊢ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) → 𝑆 ⊆ ( Base ‘ 𝑀 ) ) |
| 23 |
22
|
ssdifssd |
⊢ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) → ( 𝑆 ∖ { 𝑋 } ) ⊆ ( Base ‘ 𝑀 ) ) |
| 24 |
|
difexg |
⊢ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) → ( 𝑆 ∖ { 𝑋 } ) ∈ V ) |
| 25 |
|
elpwg |
⊢ ( ( 𝑆 ∖ { 𝑋 } ) ∈ V → ( ( 𝑆 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ↔ ( 𝑆 ∖ { 𝑋 } ) ⊆ ( Base ‘ 𝑀 ) ) ) |
| 26 |
24 25
|
syl |
⊢ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) → ( ( 𝑆 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ↔ ( 𝑆 ∖ { 𝑋 } ) ⊆ ( Base ‘ 𝑀 ) ) ) |
| 27 |
23 26
|
mpbird |
⊢ ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) → ( 𝑆 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
| 28 |
1
|
pweqi |
⊢ 𝒫 𝐵 = 𝒫 ( Base ‘ 𝑀 ) |
| 29 |
27 28
|
eleq2s |
⊢ ( 𝑆 ∈ 𝒫 𝐵 → ( 𝑆 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
| 30 |
29
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → ( 𝑆 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
| 31 |
30
|
adantr |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝑆 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) |
| 32 |
|
lincval |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( 𝑆 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) → ( ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) = ( 𝑀 Σg ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) ) ) |
| 33 |
11 21 31 32
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) = ( 𝑀 Σg ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) ) ) |
| 34 |
|
simpll |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ) |
| 35 |
|
simplr1 |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ) |
| 36 |
|
simplr2 |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
| 37 |
|
simpr |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) |
| 38 |
1 2 3 4 5 6 7 8 9 10
|
lincresunit3lem1 |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ) → ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( ( 𝐺 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) |
| 39 |
34 35 36 37 38
|
syl13anc |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( ( 𝐺 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) |
| 40 |
|
fvres |
⊢ ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) → ( ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 41 |
40
|
adantl |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 42 |
41
|
eqcomd |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( 𝐹 ‘ 𝑧 ) = ( ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ‘ 𝑧 ) ) |
| 43 |
42
|
oveq1d |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( ( 𝐹 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) = ( ( ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) |
| 44 |
39 43
|
eqtrd |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( ( 𝐺 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) = ( ( ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) |
| 45 |
44
|
mpteq2dva |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( ( 𝐺 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) ) |
| 46 |
45
|
oveq2d |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝑀 Σg ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( ( 𝐺 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) ) ) = ( 𝑀 Σg ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) ) ) |
| 47 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
| 48 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
| 49 |
|
difexg |
⊢ ( 𝑆 ∈ 𝒫 𝐵 → ( 𝑆 ∖ { 𝑋 } ) ∈ V ) |
| 50 |
49
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → ( 𝑆 ∖ { 𝑋 } ) ∈ V ) |
| 51 |
50
|
adantr |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝑆 ∖ { 𝑋 } ) ∈ V ) |
| 52 |
2
|
lmodfgrp |
⊢ ( 𝑀 ∈ LMod → 𝑅 ∈ Grp ) |
| 53 |
52
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → 𝑅 ∈ Grp ) |
| 54 |
53
|
adantr |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ) → 𝑅 ∈ Grp ) |
| 55 |
|
elmapi |
⊢ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) → 𝐹 : 𝑆 ⟶ 𝐸 ) |
| 56 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝑆 ⟶ 𝐸 ∧ 𝑋 ∈ 𝑆 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝐸 ) |
| 57 |
56
|
expcom |
⊢ ( 𝑋 ∈ 𝑆 → ( 𝐹 : 𝑆 ⟶ 𝐸 → ( 𝐹 ‘ 𝑋 ) ∈ 𝐸 ) ) |
| 58 |
57
|
3ad2ant3 |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → ( 𝐹 : 𝑆 ⟶ 𝐸 → ( 𝐹 ‘ 𝑋 ) ∈ 𝐸 ) ) |
| 59 |
55 58
|
syl5com |
⊢ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) → ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝐸 ) ) |
| 60 |
59
|
impcom |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝐸 ) |
| 61 |
3 7
|
grpinvcl |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝐸 ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ 𝐸 ) |
| 62 |
54 60 61
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ 𝐸 ) |
| 63 |
62
|
3ad2antr1 |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ 𝐸 ) |
| 64 |
11
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → 𝑀 ∈ LMod ) |
| 65 |
1 2 3 4 5 6 7 8 9 10
|
lincresunit1 |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ) → 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) |
| 66 |
65
|
3adantr3 |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) |
| 67 |
|
elmapi |
⊢ ( 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) → 𝐺 : ( 𝑆 ∖ { 𝑋 } ) ⟶ 𝐸 ) |
| 68 |
|
ffvelcdm |
⊢ ( ( 𝐺 : ( 𝑆 ∖ { 𝑋 } ) ⟶ 𝐸 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝐸 ) |
| 69 |
68
|
ex |
⊢ ( 𝐺 : ( 𝑆 ∖ { 𝑋 } ) ⟶ 𝐸 → ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝐸 ) ) |
| 70 |
66 67 69
|
3syl |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝐸 ) ) |
| 71 |
70
|
imp |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝐸 ) |
| 72 |
|
elpwi |
⊢ ( 𝑆 ∈ 𝒫 𝐵 → 𝑆 ⊆ 𝐵 ) |
| 73 |
|
eldifi |
⊢ ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) → 𝑧 ∈ 𝑆 ) |
| 74 |
|
ssel2 |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝐵 ) |
| 75 |
74
|
expcom |
⊢ ( 𝑧 ∈ 𝑆 → ( 𝑆 ⊆ 𝐵 → 𝑧 ∈ 𝐵 ) ) |
| 76 |
73 75
|
syl |
⊢ ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) → ( 𝑆 ⊆ 𝐵 → 𝑧 ∈ 𝐵 ) ) |
| 77 |
72 76
|
syl5com |
⊢ ( 𝑆 ∈ 𝒫 𝐵 → ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) → 𝑧 ∈ 𝐵 ) ) |
| 78 |
77
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) → 𝑧 ∈ 𝐵 ) ) |
| 79 |
78
|
adantr |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) → 𝑧 ∈ 𝐵 ) ) |
| 80 |
79
|
imp |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → 𝑧 ∈ 𝐵 ) |
| 81 |
1 2 48 3
|
lmodvscl |
⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝐺 ‘ 𝑧 ) ∈ 𝐸 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝐺 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ∈ 𝐵 ) |
| 82 |
64 71 80 81
|
syl3anc |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( ( 𝐺 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ∈ 𝐵 ) |
| 83 |
|
simp2 |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → 𝑀 ∈ LMod ) |
| 84 |
83 30
|
jca |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → ( 𝑀 ∈ LMod ∧ ( 𝑆 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) |
| 85 |
84
|
adantr |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝑀 ∈ LMod ∧ ( 𝑆 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) ) |
| 86 |
1 2 3 4 5 6 7 8 9 10
|
lincresunit2 |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → 𝐺 finSupp 0 ) |
| 87 |
86 5
|
breqtrdi |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → 𝐺 finSupp ( 0g ‘ 𝑅 ) ) |
| 88 |
2 3
|
scmfsupp |
⊢ ( ( ( 𝑀 ∈ LMod ∧ ( 𝑆 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ∧ 𝐺 finSupp ( 0g ‘ 𝑅 ) ) → ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) finSupp ( 0g ‘ 𝑀 ) ) |
| 89 |
88 6
|
breqtrrdi |
⊢ ( ( ( 𝑀 ∈ LMod ∧ ( 𝑆 ∖ { 𝑋 } ) ∈ 𝒫 ( Base ‘ 𝑀 ) ) ∧ 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ∧ 𝐺 finSupp ( 0g ‘ 𝑅 ) ) → ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) finSupp 𝑍 ) |
| 90 |
85 66 87 89
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) finSupp 𝑍 ) |
| 91 |
1 2 3 6 47 48 11 51 63 82 90
|
gsumvsmul |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( 𝑀 Σg ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( ( 𝐺 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) ) ) = ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( 𝑀 Σg ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) ) ) ) |
| 92 |
33 46 91
|
3eqtr2rd |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ) → ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( 𝑀 Σg ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐺 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) ) ) = ( ( 𝐹 ↾ ( 𝑆 ∖ { 𝑋 } ) ) ( linC ‘ 𝑀 ) ( 𝑆 ∖ { 𝑋 } ) ) ) |