Step |
Hyp |
Ref |
Expression |
1 |
|
lincresunit.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
lincresunit.r |
⊢ 𝑅 = ( Scalar ‘ 𝑀 ) |
3 |
|
lincresunit.e |
⊢ 𝐸 = ( Base ‘ 𝑅 ) |
4 |
|
lincresunit.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
5 |
|
lincresunit.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
6 |
|
lincresunit.z |
⊢ 𝑍 = ( 0g ‘ 𝑀 ) |
7 |
|
lincresunit.n |
⊢ 𝑁 = ( invg ‘ 𝑅 ) |
8 |
|
lincresunit.i |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
9 |
|
lincresunit.t |
⊢ · = ( .r ‘ 𝑅 ) |
10 |
|
lincresunit.g |
⊢ 𝐺 = ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑠 ) ) ) |
11 |
|
fveq2 |
⊢ ( 𝑠 = 𝑧 → ( 𝐹 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑧 ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑠 = 𝑧 → ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑠 ) ) = ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑧 ) ) ) |
13 |
|
simpr3 |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ) → 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) |
14 |
|
ovexd |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ) → ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑧 ) ) ∈ V ) |
15 |
10 12 13 14
|
fvmptd3 |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ) → ( 𝐺 ‘ 𝑧 ) = ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑧 ) ) ) |
16 |
15
|
oveq1d |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ) → ( ( 𝐺 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) = ( ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑧 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) |
17 |
16
|
oveq2d |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ) → ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( ( 𝐺 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) = ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑧 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) ) |
18 |
|
simp2 |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → 𝑀 ∈ LMod ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ) → 𝑀 ∈ LMod ) |
20 |
2
|
lmodfgrp |
⊢ ( 𝑀 ∈ LMod → 𝑅 ∈ Grp ) |
21 |
20
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → 𝑅 ∈ Grp ) |
22 |
3 4
|
unitcl |
⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 → ( 𝐹 ‘ 𝑋 ) ∈ 𝐸 ) |
23 |
22
|
3ad2ant2 |
⊢ ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝐸 ) |
24 |
3 7
|
grpinvcl |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝐸 ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ 𝐸 ) |
25 |
21 23 24
|
syl2an |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ 𝐸 ) |
26 |
|
3simpa |
⊢ ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ) |
27 |
26
|
anim2i |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ) → ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ) ) |
28 |
|
eldifi |
⊢ ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) → 𝑧 ∈ 𝑆 ) |
29 |
28
|
3ad2ant3 |
⊢ ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → 𝑧 ∈ 𝑆 ) |
30 |
29
|
adantl |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ) → 𝑧 ∈ 𝑆 ) |
31 |
1 2 3 4 5 6 7 8 9 10
|
lincresunitlem2 |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐸 ) |
32 |
27 30 31
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ) → ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐸 ) |
33 |
|
elpwi |
⊢ ( 𝑆 ∈ 𝒫 𝐵 → 𝑆 ⊆ 𝐵 ) |
34 |
33
|
sseld |
⊢ ( 𝑆 ∈ 𝒫 𝐵 → ( 𝑧 ∈ 𝑆 → 𝑧 ∈ 𝐵 ) ) |
35 |
28 34
|
syl5com |
⊢ ( 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) → ( 𝑆 ∈ 𝒫 𝐵 → 𝑧 ∈ 𝐵 ) ) |
36 |
35
|
3ad2ant3 |
⊢ ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( 𝑆 ∈ 𝒫 𝐵 → 𝑧 ∈ 𝐵 ) ) |
37 |
36
|
com12 |
⊢ ( 𝑆 ∈ 𝒫 𝐵 → ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → 𝑧 ∈ 𝐵 ) ) |
38 |
37
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → 𝑧 ∈ 𝐵 ) ) |
39 |
38
|
imp |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ) → 𝑧 ∈ 𝐵 ) |
40 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
41 |
1 2 40 3 9
|
lmodvsass |
⊢ ( ( 𝑀 ∈ LMod ∧ ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ 𝐸 ∧ ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐸 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) · ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) = ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑧 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) ) |
42 |
41
|
eqcomd |
⊢ ( ( 𝑀 ∈ LMod ∧ ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ 𝐸 ∧ ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑧 ) ) ∈ 𝐸 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑧 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) = ( ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) · ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) |
43 |
19 25 32 39 42
|
syl13anc |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ) → ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑧 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) = ( ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) · ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) |
44 |
2
|
lmodring |
⊢ ( 𝑀 ∈ LMod → 𝑅 ∈ Ring ) |
45 |
44
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → 𝑅 ∈ Ring ) |
46 |
45
|
adantr |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ) → 𝑅 ∈ Ring ) |
47 |
|
elmapi |
⊢ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) → 𝐹 : 𝑆 ⟶ 𝐸 ) |
48 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑆 ⟶ 𝐸 ∧ 𝑧 ∈ 𝑆 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐸 ) |
49 |
47 28 48
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐸 ) |
50 |
49
|
3adant2 |
⊢ ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐸 ) |
51 |
50
|
adantl |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐸 ) |
52 |
|
simp2 |
⊢ ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
53 |
52
|
adantl |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ) → ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) |
54 |
3 4 7 8 9
|
invginvrid |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝐸 ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) → ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) · ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝐹 ‘ 𝑧 ) ) |
55 |
46 51 53 54
|
syl3anc |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ) → ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) · ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝐹 ‘ 𝑧 ) ) |
56 |
55
|
oveq1d |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ) → ( ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) · ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) = ( ( 𝐹 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) |
57 |
17 43 56
|
3eqtrd |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ∧ 𝑧 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ) → ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ( ·𝑠 ‘ 𝑀 ) ( ( 𝐺 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) |