| Step |
Hyp |
Ref |
Expression |
| 1 |
|
invginvrid.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
invginvrid.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 3 |
|
invginvrid.n |
⊢ 𝑁 = ( invg ‘ 𝑅 ) |
| 4 |
|
invginvrid.i |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
| 5 |
|
invginvrid.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 6 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 7 |
6
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 8 |
7
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 9 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| 10 |
1 2
|
unitcl |
⊢ ( 𝑌 ∈ 𝑈 → 𝑌 ∈ 𝐵 ) |
| 11 |
1 3
|
grpinvcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ) |
| 12 |
9 10 11
|
syl2an |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ) → ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ) |
| 13 |
12
|
3adant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ) |
| 14 |
2 3
|
unitnegcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ) → ( 𝑁 ‘ 𝑌 ) ∈ 𝑈 ) |
| 15 |
2 4 1
|
ringinvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 ‘ 𝑌 ) ∈ 𝑈 ) → ( 𝐼 ‘ ( 𝑁 ‘ 𝑌 ) ) ∈ 𝐵 ) |
| 16 |
14 15
|
syldan |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ) → ( 𝐼 ‘ ( 𝑁 ‘ 𝑌 ) ) ∈ 𝐵 ) |
| 17 |
16
|
3adant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 𝐼 ‘ ( 𝑁 ‘ 𝑌 ) ) ∈ 𝐵 ) |
| 18 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → 𝑋 ∈ 𝐵 ) |
| 19 |
6 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 20 |
6 5
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 21 |
19 20
|
mndass |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ ( ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ∧ ( 𝐼 ‘ ( 𝑁 ‘ 𝑌 ) ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( ( 𝑁 ‘ 𝑌 ) · ( 𝐼 ‘ ( 𝑁 ‘ 𝑌 ) ) ) · 𝑋 ) = ( ( 𝑁 ‘ 𝑌 ) · ( ( 𝐼 ‘ ( 𝑁 ‘ 𝑌 ) ) · 𝑋 ) ) ) |
| 22 |
21
|
eqcomd |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ ( ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ∧ ( 𝐼 ‘ ( 𝑁 ‘ 𝑌 ) ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑁 ‘ 𝑌 ) · ( ( 𝐼 ‘ ( 𝑁 ‘ 𝑌 ) ) · 𝑋 ) ) = ( ( ( 𝑁 ‘ 𝑌 ) · ( 𝐼 ‘ ( 𝑁 ‘ 𝑌 ) ) ) · 𝑋 ) ) |
| 23 |
8 13 17 18 22
|
syl13anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑁 ‘ 𝑌 ) · ( ( 𝐼 ‘ ( 𝑁 ‘ 𝑌 ) ) · 𝑋 ) ) = ( ( ( 𝑁 ‘ 𝑌 ) · ( 𝐼 ‘ ( 𝑁 ‘ 𝑌 ) ) ) · 𝑋 ) ) |
| 24 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → 𝑅 ∈ Ring ) |
| 25 |
14
|
3adant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑁 ‘ 𝑌 ) ∈ 𝑈 ) |
| 26 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 27 |
2 4 5 26
|
unitrinv |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 ‘ 𝑌 ) ∈ 𝑈 ) → ( ( 𝑁 ‘ 𝑌 ) · ( 𝐼 ‘ ( 𝑁 ‘ 𝑌 ) ) ) = ( 1r ‘ 𝑅 ) ) |
| 28 |
24 25 27
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑁 ‘ 𝑌 ) · ( 𝐼 ‘ ( 𝑁 ‘ 𝑌 ) ) ) = ( 1r ‘ 𝑅 ) ) |
| 29 |
28
|
oveq1d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( ( 𝑁 ‘ 𝑌 ) · ( 𝐼 ‘ ( 𝑁 ‘ 𝑌 ) ) ) · 𝑋 ) = ( ( 1r ‘ 𝑅 ) · 𝑋 ) ) |
| 30 |
1 5 26
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) · 𝑋 ) = 𝑋 ) |
| 31 |
30
|
3adant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( 1r ‘ 𝑅 ) · 𝑋 ) = 𝑋 ) |
| 32 |
23 29 31
|
3eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑁 ‘ 𝑌 ) · ( ( 𝐼 ‘ ( 𝑁 ‘ 𝑌 ) ) · 𝑋 ) ) = 𝑋 ) |