| Step |
Hyp |
Ref |
Expression |
| 1 |
|
invginvrid.b |
|
| 2 |
|
invginvrid.u |
|
| 3 |
|
invginvrid.n |
|
| 4 |
|
invginvrid.i |
|
| 5 |
|
invginvrid.t |
|
| 6 |
|
eqid |
|
| 7 |
6
|
ringmgp |
|
| 8 |
7
|
3ad2ant1 |
|
| 9 |
|
ringgrp |
|
| 10 |
1 2
|
unitcl |
|
| 11 |
1 3
|
grpinvcl |
|
| 12 |
9 10 11
|
syl2an |
|
| 13 |
12
|
3adant2 |
|
| 14 |
2 3
|
unitnegcl |
|
| 15 |
2 4 1
|
ringinvcl |
|
| 16 |
14 15
|
syldan |
|
| 17 |
16
|
3adant2 |
|
| 18 |
|
simp2 |
|
| 19 |
6 1
|
mgpbas |
|
| 20 |
6 5
|
mgpplusg |
|
| 21 |
19 20
|
mndass |
|
| 22 |
21
|
eqcomd |
|
| 23 |
8 13 17 18 22
|
syl13anc |
|
| 24 |
|
simp1 |
|
| 25 |
14
|
3adant2 |
|
| 26 |
|
eqid |
|
| 27 |
2 4 5 26
|
unitrinv |
|
| 28 |
24 25 27
|
syl2anc |
|
| 29 |
28
|
oveq1d |
|
| 30 |
1 5 26
|
ringlidm |
|
| 31 |
30
|
3adant3 |
|
| 32 |
23 29 31
|
3eqtrd |
|