| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lincresunit.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
lincresunit.r |
⊢ 𝑅 = ( Scalar ‘ 𝑀 ) |
| 3 |
|
lincresunit.e |
⊢ 𝐸 = ( Base ‘ 𝑅 ) |
| 4 |
|
lincresunit.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 5 |
|
lincresunit.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 6 |
|
lincresunit.z |
⊢ 𝑍 = ( 0g ‘ 𝑀 ) |
| 7 |
|
lincresunit.n |
⊢ 𝑁 = ( invg ‘ 𝑅 ) |
| 8 |
|
lincresunit.i |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
| 9 |
|
lincresunit.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 10 |
|
lincresunit.g |
⊢ 𝐺 = ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑠 ) ) ) |
| 11 |
|
eldifi |
⊢ ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) → 𝑠 ∈ 𝑆 ) |
| 12 |
1 2 3 4 5 6 7 8 9 10
|
lincresunitlem2 |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ) ∧ 𝑠 ∈ 𝑆 ) → ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑠 ) ) ∈ 𝐸 ) |
| 13 |
11 12
|
sylan2 |
⊢ ( ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ) ∧ 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑠 ) ) ∈ 𝐸 ) |
| 14 |
13
|
fmpttd |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ) → ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑠 ) ) ) : ( 𝑆 ∖ { 𝑋 } ) ⟶ 𝐸 ) |
| 15 |
3
|
fvexi |
⊢ 𝐸 ∈ V |
| 16 |
|
difexg |
⊢ ( 𝑆 ∈ 𝒫 𝐵 → ( 𝑆 ∖ { 𝑋 } ) ∈ V ) |
| 17 |
16
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) → ( 𝑆 ∖ { 𝑋 } ) ∈ V ) |
| 18 |
17
|
adantr |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ) → ( 𝑆 ∖ { 𝑋 } ) ∈ V ) |
| 19 |
|
elmapg |
⊢ ( ( 𝐸 ∈ V ∧ ( 𝑆 ∖ { 𝑋 } ) ∈ V ) → ( ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑠 ) ) ) ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ↔ ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑠 ) ) ) : ( 𝑆 ∖ { 𝑋 } ) ⟶ 𝐸 ) ) |
| 20 |
15 18 19
|
sylancr |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ) → ( ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑠 ) ) ) ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ↔ ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑠 ) ) ) : ( 𝑆 ∖ { 𝑋 } ) ⟶ 𝐸 ) ) |
| 21 |
14 20
|
mpbird |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ) → ( 𝑠 ∈ ( 𝑆 ∖ { 𝑋 } ) ↦ ( ( 𝐼 ‘ ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) · ( 𝐹 ‘ 𝑠 ) ) ) ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) |
| 22 |
10 21
|
eqeltrid |
⊢ ( ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝑈 ) ) → 𝐺 ∈ ( 𝐸 ↑m ( 𝑆 ∖ { 𝑋 } ) ) ) |