| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmat22.m | ⊢ 𝑀  =  ( litMat ‘ 〈“ 〈“ 𝐴 𝐵 ”〉 〈“ 𝐶 𝐷 ”〉 ”〉 ) | 
						
							| 2 |  | lmat22.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 3 |  | lmat22.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑉 ) | 
						
							| 4 |  | lmat22.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑉 ) | 
						
							| 5 |  | lmat22.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑉 ) | 
						
							| 6 |  | lmat22det.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 7 |  | lmat22det.s | ⊢  −   =  ( -g ‘ 𝑅 ) | 
						
							| 8 |  | lmat22det.v | ⊢ 𝑉  =  ( Base ‘ 𝑅 ) | 
						
							| 9 |  | lmat22det.j | ⊢ 𝐽  =  ( ( 1 ... 2 )  maDet  𝑅 ) | 
						
							| 10 |  | lmat22det.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 11 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  2  ∈  ℕ ) | 
						
							| 13 | 2 3 | s2cld | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 ”〉  ∈  Word  𝑉 ) | 
						
							| 14 | 4 5 | s2cld | ⊢ ( 𝜑  →  〈“ 𝐶 𝐷 ”〉  ∈  Word  𝑉 ) | 
						
							| 15 | 13 14 | s2cld | ⊢ ( 𝜑  →  〈“ 〈“ 𝐴 𝐵 ”〉 〈“ 𝐶 𝐷 ”〉 ”〉  ∈  Word  Word  𝑉 ) | 
						
							| 16 |  | s2len | ⊢ ( ♯ ‘ 〈“ 〈“ 𝐴 𝐵 ”〉 〈“ 𝐶 𝐷 ”〉 ”〉 )  =  2 | 
						
							| 17 | 16 | a1i | ⊢ ( 𝜑  →  ( ♯ ‘ 〈“ 〈“ 𝐴 𝐵 ”〉 〈“ 𝐶 𝐷 ”〉 ”〉 )  =  2 ) | 
						
							| 18 | 1 2 3 4 5 | lmat22lem | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 2 ) )  →  ( ♯ ‘ ( 〈“ 〈“ 𝐴 𝐵 ”〉 〈“ 𝐶 𝐷 ”〉 ”〉 ‘ 𝑖 ) )  =  2 ) | 
						
							| 19 |  | eqid | ⊢ ( ( 1 ... 2 )  Mat  𝑅 )  =  ( ( 1 ... 2 )  Mat  𝑅 ) | 
						
							| 20 |  | eqid | ⊢ ( Base ‘ ( ( 1 ... 2 )  Mat  𝑅 ) )  =  ( Base ‘ ( ( 1 ... 2 )  Mat  𝑅 ) ) | 
						
							| 21 | 1 12 15 17 18 8 19 20 10 | lmatcl | ⊢ ( 𝜑  →  𝑀  ∈  ( Base ‘ ( ( 1 ... 2 )  Mat  𝑅 ) ) ) | 
						
							| 22 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 23 |  | fzval3 | ⊢ ( 2  ∈  ℤ  →  ( 1 ... 2 )  =  ( 1 ..^ ( 2  +  1 ) ) ) | 
						
							| 24 | 22 23 | ax-mp | ⊢ ( 1 ... 2 )  =  ( 1 ..^ ( 2  +  1 ) ) | 
						
							| 25 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 26 | 25 | oveq2i | ⊢ ( 1 ..^ ( 2  +  1 ) )  =  ( 1 ..^ 3 ) | 
						
							| 27 |  | fzo13pr | ⊢ ( 1 ..^ 3 )  =  { 1 ,  2 } | 
						
							| 28 | 24 26 27 | 3eqtri | ⊢ ( 1 ... 2 )  =  { 1 ,  2 } | 
						
							| 29 | 28 9 19 20 7 6 | m2detleib | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  ( Base ‘ ( ( 1 ... 2 )  Mat  𝑅 ) ) )  →  ( 𝐽 ‘ 𝑀 )  =  ( ( ( 1 𝑀 1 )  ·  ( 2 𝑀 2 ) )  −  ( ( 2 𝑀 1 )  ·  ( 1 𝑀 2 ) ) ) ) | 
						
							| 30 | 10 21 29 | syl2anc | ⊢ ( 𝜑  →  ( 𝐽 ‘ 𝑀 )  =  ( ( ( 1 𝑀 1 )  ·  ( 2 𝑀 2 ) )  −  ( ( 2 𝑀 1 )  ·  ( 1 𝑀 2 ) ) ) ) | 
						
							| 31 | 1 2 3 4 5 | lmat22e11 | ⊢ ( 𝜑  →  ( 1 𝑀 1 )  =  𝐴 ) | 
						
							| 32 | 1 2 3 4 5 | lmat22e22 | ⊢ ( 𝜑  →  ( 2 𝑀 2 )  =  𝐷 ) | 
						
							| 33 | 31 32 | oveq12d | ⊢ ( 𝜑  →  ( ( 1 𝑀 1 )  ·  ( 2 𝑀 2 ) )  =  ( 𝐴  ·  𝐷 ) ) | 
						
							| 34 | 1 2 3 4 5 | lmat22e21 | ⊢ ( 𝜑  →  ( 2 𝑀 1 )  =  𝐶 ) | 
						
							| 35 | 1 2 3 4 5 | lmat22e12 | ⊢ ( 𝜑  →  ( 1 𝑀 2 )  =  𝐵 ) | 
						
							| 36 | 34 35 | oveq12d | ⊢ ( 𝜑  →  ( ( 2 𝑀 1 )  ·  ( 1 𝑀 2 ) )  =  ( 𝐶  ·  𝐵 ) ) | 
						
							| 37 | 33 36 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 1 𝑀 1 )  ·  ( 2 𝑀 2 ) )  −  ( ( 2 𝑀 1 )  ·  ( 1 𝑀 2 ) ) )  =  ( ( 𝐴  ·  𝐷 )  −  ( 𝐶  ·  𝐵 ) ) ) | 
						
							| 38 | 30 37 | eqtrd | ⊢ ( 𝜑  →  ( 𝐽 ‘ 𝑀 )  =  ( ( 𝐴  ·  𝐷 )  −  ( 𝐶  ·  𝐵 ) ) ) |