Metamath Proof Explorer


Theorem lmat22det

Description: The determinant of a literal 2x2 complex matrix. (Contributed by Thierry Arnoux, 1-Sep-2020)

Ref Expression
Hypotheses lmat22.m M=litMat⟨“⟨“AB”⟩⟨“CD”⟩”⟩
lmat22.a φAV
lmat22.b φBV
lmat22.c φCV
lmat22.d φDV
lmat22det.t ·˙=R
lmat22det.s -˙=-R
lmat22det.v V=BaseR
lmat22det.j J=12maDetR
lmat22det.r φRRing
Assertion lmat22det φJM=A·˙D-˙C·˙B

Proof

Step Hyp Ref Expression
1 lmat22.m M=litMat⟨“⟨“AB”⟩⟨“CD”⟩”⟩
2 lmat22.a φAV
3 lmat22.b φBV
4 lmat22.c φCV
5 lmat22.d φDV
6 lmat22det.t ·˙=R
7 lmat22det.s -˙=-R
8 lmat22det.v V=BaseR
9 lmat22det.j J=12maDetR
10 lmat22det.r φRRing
11 2nn 2
12 11 a1i φ2
13 2 3 s2cld φ⟨“AB”⟩WordV
14 4 5 s2cld φ⟨“CD”⟩WordV
15 13 14 s2cld φ⟨“⟨“AB”⟩⟨“CD”⟩”⟩WordWordV
16 s2len ⟨“⟨“AB”⟩⟨“CD”⟩”⟩=2
17 16 a1i φ⟨“⟨“AB”⟩⟨“CD”⟩”⟩=2
18 1 2 3 4 5 lmat22lem φi0..^2⟨“⟨“AB”⟩⟨“CD”⟩”⟩i=2
19 eqid 12MatR=12MatR
20 eqid Base12MatR=Base12MatR
21 1 12 15 17 18 8 19 20 10 lmatcl φMBase12MatR
22 2z 2
23 fzval3 212=1..^2+1
24 22 23 ax-mp 12=1..^2+1
25 2p1e3 2+1=3
26 25 oveq2i 1..^2+1=1..^3
27 fzo13pr 1..^3=12
28 24 26 27 3eqtri 12=12
29 28 9 19 20 7 6 m2detleib RRingMBase12MatRJM=1M1·˙2M2-˙2M1·˙1M2
30 10 21 29 syl2anc φJM=1M1·˙2M2-˙2M1·˙1M2
31 1 2 3 4 5 lmat22e11 φ1M1=A
32 1 2 3 4 5 lmat22e22 φ2M2=D
33 31 32 oveq12d φ1M1·˙2M2=A·˙D
34 1 2 3 4 5 lmat22e21 φ2M1=C
35 1 2 3 4 5 lmat22e12 φ1M2=B
36 34 35 oveq12d φ2M1·˙1M2=C·˙B
37 33 36 oveq12d φ1M1·˙2M2-˙2M1·˙1M2=A·˙D-˙C·˙B
38 30 37 eqtrd φJM=A·˙D-˙C·˙B