| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmat22.m |  |-  M = ( litMat ` <" <" A B "> <" C D "> "> ) | 
						
							| 2 |  | lmat22.a |  |-  ( ph -> A e. V ) | 
						
							| 3 |  | lmat22.b |  |-  ( ph -> B e. V ) | 
						
							| 4 |  | lmat22.c |  |-  ( ph -> C e. V ) | 
						
							| 5 |  | lmat22.d |  |-  ( ph -> D e. V ) | 
						
							| 6 |  | lmat22det.t |  |-  .x. = ( .r ` R ) | 
						
							| 7 |  | lmat22det.s |  |-  .- = ( -g ` R ) | 
						
							| 8 |  | lmat22det.v |  |-  V = ( Base ` R ) | 
						
							| 9 |  | lmat22det.j |  |-  J = ( ( 1 ... 2 ) maDet R ) | 
						
							| 10 |  | lmat22det.r |  |-  ( ph -> R e. Ring ) | 
						
							| 11 |  | 2nn |  |-  2 e. NN | 
						
							| 12 | 11 | a1i |  |-  ( ph -> 2 e. NN ) | 
						
							| 13 | 2 3 | s2cld |  |-  ( ph -> <" A B "> e. Word V ) | 
						
							| 14 | 4 5 | s2cld |  |-  ( ph -> <" C D "> e. Word V ) | 
						
							| 15 | 13 14 | s2cld |  |-  ( ph -> <" <" A B "> <" C D "> "> e. Word Word V ) | 
						
							| 16 |  | s2len |  |-  ( # ` <" <" A B "> <" C D "> "> ) = 2 | 
						
							| 17 | 16 | a1i |  |-  ( ph -> ( # ` <" <" A B "> <" C D "> "> ) = 2 ) | 
						
							| 18 | 1 2 3 4 5 | lmat22lem |  |-  ( ( ph /\ i e. ( 0 ..^ 2 ) ) -> ( # ` ( <" <" A B "> <" C D "> "> ` i ) ) = 2 ) | 
						
							| 19 |  | eqid |  |-  ( ( 1 ... 2 ) Mat R ) = ( ( 1 ... 2 ) Mat R ) | 
						
							| 20 |  | eqid |  |-  ( Base ` ( ( 1 ... 2 ) Mat R ) ) = ( Base ` ( ( 1 ... 2 ) Mat R ) ) | 
						
							| 21 | 1 12 15 17 18 8 19 20 10 | lmatcl |  |-  ( ph -> M e. ( Base ` ( ( 1 ... 2 ) Mat R ) ) ) | 
						
							| 22 |  | 2z |  |-  2 e. ZZ | 
						
							| 23 |  | fzval3 |  |-  ( 2 e. ZZ -> ( 1 ... 2 ) = ( 1 ..^ ( 2 + 1 ) ) ) | 
						
							| 24 | 22 23 | ax-mp |  |-  ( 1 ... 2 ) = ( 1 ..^ ( 2 + 1 ) ) | 
						
							| 25 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 26 | 25 | oveq2i |  |-  ( 1 ..^ ( 2 + 1 ) ) = ( 1 ..^ 3 ) | 
						
							| 27 |  | fzo13pr |  |-  ( 1 ..^ 3 ) = { 1 , 2 } | 
						
							| 28 | 24 26 27 | 3eqtri |  |-  ( 1 ... 2 ) = { 1 , 2 } | 
						
							| 29 | 28 9 19 20 7 6 | m2detleib |  |-  ( ( R e. Ring /\ M e. ( Base ` ( ( 1 ... 2 ) Mat R ) ) ) -> ( J ` M ) = ( ( ( 1 M 1 ) .x. ( 2 M 2 ) ) .- ( ( 2 M 1 ) .x. ( 1 M 2 ) ) ) ) | 
						
							| 30 | 10 21 29 | syl2anc |  |-  ( ph -> ( J ` M ) = ( ( ( 1 M 1 ) .x. ( 2 M 2 ) ) .- ( ( 2 M 1 ) .x. ( 1 M 2 ) ) ) ) | 
						
							| 31 | 1 2 3 4 5 | lmat22e11 |  |-  ( ph -> ( 1 M 1 ) = A ) | 
						
							| 32 | 1 2 3 4 5 | lmat22e22 |  |-  ( ph -> ( 2 M 2 ) = D ) | 
						
							| 33 | 31 32 | oveq12d |  |-  ( ph -> ( ( 1 M 1 ) .x. ( 2 M 2 ) ) = ( A .x. D ) ) | 
						
							| 34 | 1 2 3 4 5 | lmat22e21 |  |-  ( ph -> ( 2 M 1 ) = C ) | 
						
							| 35 | 1 2 3 4 5 | lmat22e12 |  |-  ( ph -> ( 1 M 2 ) = B ) | 
						
							| 36 | 34 35 | oveq12d |  |-  ( ph -> ( ( 2 M 1 ) .x. ( 1 M 2 ) ) = ( C .x. B ) ) | 
						
							| 37 | 33 36 | oveq12d |  |-  ( ph -> ( ( ( 1 M 1 ) .x. ( 2 M 2 ) ) .- ( ( 2 M 1 ) .x. ( 1 M 2 ) ) ) = ( ( A .x. D ) .- ( C .x. B ) ) ) | 
						
							| 38 | 30 37 | eqtrd |  |-  ( ph -> ( J ` M ) = ( ( A .x. D ) .- ( C .x. B ) ) ) |