| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmat22.m |
|- M = ( litMat ` <" <" A B "> <" C D "> "> ) |
| 2 |
|
lmat22.a |
|- ( ph -> A e. V ) |
| 3 |
|
lmat22.b |
|- ( ph -> B e. V ) |
| 4 |
|
lmat22.c |
|- ( ph -> C e. V ) |
| 5 |
|
lmat22.d |
|- ( ph -> D e. V ) |
| 6 |
|
lmat22det.t |
|- .x. = ( .r ` R ) |
| 7 |
|
lmat22det.s |
|- .- = ( -g ` R ) |
| 8 |
|
lmat22det.v |
|- V = ( Base ` R ) |
| 9 |
|
lmat22det.j |
|- J = ( ( 1 ... 2 ) maDet R ) |
| 10 |
|
lmat22det.r |
|- ( ph -> R e. Ring ) |
| 11 |
|
2nn |
|- 2 e. NN |
| 12 |
11
|
a1i |
|- ( ph -> 2 e. NN ) |
| 13 |
2 3
|
s2cld |
|- ( ph -> <" A B "> e. Word V ) |
| 14 |
4 5
|
s2cld |
|- ( ph -> <" C D "> e. Word V ) |
| 15 |
13 14
|
s2cld |
|- ( ph -> <" <" A B "> <" C D "> "> e. Word Word V ) |
| 16 |
|
s2len |
|- ( # ` <" <" A B "> <" C D "> "> ) = 2 |
| 17 |
16
|
a1i |
|- ( ph -> ( # ` <" <" A B "> <" C D "> "> ) = 2 ) |
| 18 |
1 2 3 4 5
|
lmat22lem |
|- ( ( ph /\ i e. ( 0 ..^ 2 ) ) -> ( # ` ( <" <" A B "> <" C D "> "> ` i ) ) = 2 ) |
| 19 |
|
eqid |
|- ( ( 1 ... 2 ) Mat R ) = ( ( 1 ... 2 ) Mat R ) |
| 20 |
|
eqid |
|- ( Base ` ( ( 1 ... 2 ) Mat R ) ) = ( Base ` ( ( 1 ... 2 ) Mat R ) ) |
| 21 |
1 12 15 17 18 8 19 20 10
|
lmatcl |
|- ( ph -> M e. ( Base ` ( ( 1 ... 2 ) Mat R ) ) ) |
| 22 |
|
2z |
|- 2 e. ZZ |
| 23 |
|
fzval3 |
|- ( 2 e. ZZ -> ( 1 ... 2 ) = ( 1 ..^ ( 2 + 1 ) ) ) |
| 24 |
22 23
|
ax-mp |
|- ( 1 ... 2 ) = ( 1 ..^ ( 2 + 1 ) ) |
| 25 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
| 26 |
25
|
oveq2i |
|- ( 1 ..^ ( 2 + 1 ) ) = ( 1 ..^ 3 ) |
| 27 |
|
fzo13pr |
|- ( 1 ..^ 3 ) = { 1 , 2 } |
| 28 |
24 26 27
|
3eqtri |
|- ( 1 ... 2 ) = { 1 , 2 } |
| 29 |
28 9 19 20 7 6
|
m2detleib |
|- ( ( R e. Ring /\ M e. ( Base ` ( ( 1 ... 2 ) Mat R ) ) ) -> ( J ` M ) = ( ( ( 1 M 1 ) .x. ( 2 M 2 ) ) .- ( ( 2 M 1 ) .x. ( 1 M 2 ) ) ) ) |
| 30 |
10 21 29
|
syl2anc |
|- ( ph -> ( J ` M ) = ( ( ( 1 M 1 ) .x. ( 2 M 2 ) ) .- ( ( 2 M 1 ) .x. ( 1 M 2 ) ) ) ) |
| 31 |
1 2 3 4 5
|
lmat22e11 |
|- ( ph -> ( 1 M 1 ) = A ) |
| 32 |
1 2 3 4 5
|
lmat22e22 |
|- ( ph -> ( 2 M 2 ) = D ) |
| 33 |
31 32
|
oveq12d |
|- ( ph -> ( ( 1 M 1 ) .x. ( 2 M 2 ) ) = ( A .x. D ) ) |
| 34 |
1 2 3 4 5
|
lmat22e21 |
|- ( ph -> ( 2 M 1 ) = C ) |
| 35 |
1 2 3 4 5
|
lmat22e12 |
|- ( ph -> ( 1 M 2 ) = B ) |
| 36 |
34 35
|
oveq12d |
|- ( ph -> ( ( 2 M 1 ) .x. ( 1 M 2 ) ) = ( C .x. B ) ) |
| 37 |
33 36
|
oveq12d |
|- ( ph -> ( ( ( 1 M 1 ) .x. ( 2 M 2 ) ) .- ( ( 2 M 1 ) .x. ( 1 M 2 ) ) ) = ( ( A .x. D ) .- ( C .x. B ) ) ) |
| 38 |
30 37
|
eqtrd |
|- ( ph -> ( J ` M ) = ( ( A .x. D ) .- ( C .x. B ) ) ) |