| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( Scalar ‘ 𝑀 )  =  ( Scalar ‘ 𝑀 ) | 
						
							| 2 | 1 | lmodring | ⊢ ( 𝑀  ∈  LMod  →  ( Scalar ‘ 𝑀 )  ∈  Ring ) | 
						
							| 3 |  | 0ringnnzr | ⊢ ( ( Scalar ‘ 𝑀 )  ∈  Ring  →  ( ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) )  =  1  ↔  ¬  ( Scalar ‘ 𝑀 )  ∈  NzRing ) ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) )  =  ( Base ‘ ( Scalar ‘ 𝑀 ) ) | 
						
							| 5 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑀 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑀 ) ) | 
						
							| 6 |  | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑀 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑀 ) ) | 
						
							| 7 | 4 5 6 | 0ring01eq | ⊢ ( ( ( Scalar ‘ 𝑀 )  ∈  Ring  ∧  ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) )  =  1 )  →  ( 0g ‘ ( Scalar ‘ 𝑀 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 9 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑀 )  =  (  ·𝑠  ‘ 𝑀 ) | 
						
							| 10 | 8 1 9 6 | lmodvs1 | ⊢ ( ( 𝑀  ∈  LMod  ∧  𝑣  ∈  ( Base ‘ 𝑀 ) )  →  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑣 )  =  𝑣 ) | 
						
							| 11 |  | eqcom | ⊢ ( ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑣 )  =  𝑣  ↔  𝑣  =  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑣 ) ) | 
						
							| 12 | 11 | biimpi | ⊢ ( ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑣 )  =  𝑣  →  𝑣  =  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑣 ) ) | 
						
							| 13 |  | oveq1 | ⊢ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑀 ) )  →  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑣 )  =  ( ( 0g ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑣 ) ) | 
						
							| 14 | 13 | eqcoms | ⊢ ( ( 0g ‘ ( Scalar ‘ 𝑀 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑀 ) )  →  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑣 )  =  ( ( 0g ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑣 ) ) | 
						
							| 15 |  | eqid | ⊢ ( 0g ‘ 𝑀 )  =  ( 0g ‘ 𝑀 ) | 
						
							| 16 | 8 1 9 5 15 | lmod0vs | ⊢ ( ( 𝑀  ∈  LMod  ∧  𝑣  ∈  ( Base ‘ 𝑀 ) )  →  ( ( 0g ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑣 )  =  ( 0g ‘ 𝑀 ) ) | 
						
							| 17 | 14 16 | sylan9eqr | ⊢ ( ( ( 𝑀  ∈  LMod  ∧  𝑣  ∈  ( Base ‘ 𝑀 ) )  ∧  ( 0g ‘ ( Scalar ‘ 𝑀 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑀 ) ) )  →  ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑣 )  =  ( 0g ‘ 𝑀 ) ) | 
						
							| 18 | 12 17 | sylan9eq | ⊢ ( ( ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑣 )  =  𝑣  ∧  ( ( 𝑀  ∈  LMod  ∧  𝑣  ∈  ( Base ‘ 𝑀 ) )  ∧  ( 0g ‘ ( Scalar ‘ 𝑀 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ) )  →  𝑣  =  ( 0g ‘ 𝑀 ) ) | 
						
							| 19 | 18 | exp32 | ⊢ ( ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) (  ·𝑠  ‘ 𝑀 ) 𝑣 )  =  𝑣  →  ( ( 𝑀  ∈  LMod  ∧  𝑣  ∈  ( Base ‘ 𝑀 ) )  →  ( ( 0g ‘ ( Scalar ‘ 𝑀 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑀 ) )  →  𝑣  =  ( 0g ‘ 𝑀 ) ) ) ) | 
						
							| 20 | 10 19 | mpcom | ⊢ ( ( 𝑀  ∈  LMod  ∧  𝑣  ∈  ( Base ‘ 𝑀 ) )  →  ( ( 0g ‘ ( Scalar ‘ 𝑀 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑀 ) )  →  𝑣  =  ( 0g ‘ 𝑀 ) ) ) | 
						
							| 21 | 20 | com12 | ⊢ ( ( 0g ‘ ( Scalar ‘ 𝑀 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑀 ) )  →  ( ( 𝑀  ∈  LMod  ∧  𝑣  ∈  ( Base ‘ 𝑀 ) )  →  𝑣  =  ( 0g ‘ 𝑀 ) ) ) | 
						
							| 22 | 21 | impl | ⊢ ( ( ( ( 0g ‘ ( Scalar ‘ 𝑀 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑀  ∈  LMod )  ∧  𝑣  ∈  ( Base ‘ 𝑀 ) )  →  𝑣  =  ( 0g ‘ 𝑀 ) ) | 
						
							| 23 | 22 | ralrimiva | ⊢ ( ( ( 0g ‘ ( Scalar ‘ 𝑀 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑀  ∈  LMod )  →  ∀ 𝑣  ∈  ( Base ‘ 𝑀 ) 𝑣  =  ( 0g ‘ 𝑀 ) ) | 
						
							| 24 | 8 | lmodbn0 | ⊢ ( 𝑀  ∈  LMod  →  ( Base ‘ 𝑀 )  ≠  ∅ ) | 
						
							| 25 |  | eqsn | ⊢ ( ( Base ‘ 𝑀 )  ≠  ∅  →  ( ( Base ‘ 𝑀 )  =  { ( 0g ‘ 𝑀 ) }  ↔  ∀ 𝑣  ∈  ( Base ‘ 𝑀 ) 𝑣  =  ( 0g ‘ 𝑀 ) ) ) | 
						
							| 26 | 24 25 | syl | ⊢ ( 𝑀  ∈  LMod  →  ( ( Base ‘ 𝑀 )  =  { ( 0g ‘ 𝑀 ) }  ↔  ∀ 𝑣  ∈  ( Base ‘ 𝑀 ) 𝑣  =  ( 0g ‘ 𝑀 ) ) ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( ( 0g ‘ ( Scalar ‘ 𝑀 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑀  ∈  LMod )  →  ( ( Base ‘ 𝑀 )  =  { ( 0g ‘ 𝑀 ) }  ↔  ∀ 𝑣  ∈  ( Base ‘ 𝑀 ) 𝑣  =  ( 0g ‘ 𝑀 ) ) ) | 
						
							| 28 | 23 27 | mpbird | ⊢ ( ( ( 0g ‘ ( Scalar ‘ 𝑀 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑀 ) )  ∧  𝑀  ∈  LMod )  →  ( Base ‘ 𝑀 )  =  { ( 0g ‘ 𝑀 ) } ) | 
						
							| 29 | 28 | ex | ⊢ ( ( 0g ‘ ( Scalar ‘ 𝑀 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑀 ) )  →  ( 𝑀  ∈  LMod  →  ( Base ‘ 𝑀 )  =  { ( 0g ‘ 𝑀 ) } ) ) | 
						
							| 30 | 7 29 | syl | ⊢ ( ( ( Scalar ‘ 𝑀 )  ∈  Ring  ∧  ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) )  =  1 )  →  ( 𝑀  ∈  LMod  →  ( Base ‘ 𝑀 )  =  { ( 0g ‘ 𝑀 ) } ) ) | 
						
							| 31 | 30 | ex | ⊢ ( ( Scalar ‘ 𝑀 )  ∈  Ring  →  ( ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) )  =  1  →  ( 𝑀  ∈  LMod  →  ( Base ‘ 𝑀 )  =  { ( 0g ‘ 𝑀 ) } ) ) ) | 
						
							| 32 | 3 31 | sylbird | ⊢ ( ( Scalar ‘ 𝑀 )  ∈  Ring  →  ( ¬  ( Scalar ‘ 𝑀 )  ∈  NzRing  →  ( 𝑀  ∈  LMod  →  ( Base ‘ 𝑀 )  =  { ( 0g ‘ 𝑀 ) } ) ) ) | 
						
							| 33 | 32 | com23 | ⊢ ( ( Scalar ‘ 𝑀 )  ∈  Ring  →  ( 𝑀  ∈  LMod  →  ( ¬  ( Scalar ‘ 𝑀 )  ∈  NzRing  →  ( Base ‘ 𝑀 )  =  { ( 0g ‘ 𝑀 ) } ) ) ) | 
						
							| 34 | 2 33 | mpcom | ⊢ ( 𝑀  ∈  LMod  →  ( ¬  ( Scalar ‘ 𝑀 )  ∈  NzRing  →  ( Base ‘ 𝑀 )  =  { ( 0g ‘ 𝑀 ) } ) ) | 
						
							| 35 | 34 | imp | ⊢ ( ( 𝑀  ∈  LMod  ∧  ¬  ( Scalar ‘ 𝑀 )  ∈  NzRing )  →  ( Base ‘ 𝑀 )  =  { ( 0g ‘ 𝑀 ) } ) |