Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
2 |
1
|
lmodring |
⊢ ( 𝑀 ∈ LMod → ( Scalar ‘ 𝑀 ) ∈ Ring ) |
3 |
|
0ringnnzr |
⊢ ( ( Scalar ‘ 𝑀 ) ∈ Ring → ( ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) = 1 ↔ ¬ ( Scalar ‘ 𝑀 ) ∈ NzRing ) ) |
4 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
5 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) |
6 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑀 ) ) = ( 1r ‘ ( Scalar ‘ 𝑀 ) ) |
7 |
4 5 6
|
0ring01eq |
⊢ ( ( ( Scalar ‘ 𝑀 ) ∈ Ring ∧ ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) = 1 ) → ( 0g ‘ ( Scalar ‘ 𝑀 ) ) = ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
9 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
10 |
8 1 9 6
|
lmodvs1 |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = 𝑣 ) |
11 |
|
eqcom |
⊢ ( ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = 𝑣 ↔ 𝑣 = ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) |
12 |
11
|
biimpi |
⊢ ( ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = 𝑣 → 𝑣 = ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) |
13 |
|
oveq1 |
⊢ ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = ( ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) |
14 |
13
|
eqcoms |
⊢ ( ( 0g ‘ ( Scalar ‘ 𝑀 ) ) = ( 1r ‘ ( Scalar ‘ 𝑀 ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = ( ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) |
15 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
16 |
8 1 9 5 15
|
lmod0vs |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = ( 0g ‘ 𝑀 ) ) |
17 |
14 16
|
sylan9eqr |
⊢ ( ( ( 𝑀 ∈ LMod ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) ∧ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) = ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = ( 0g ‘ 𝑀 ) ) |
18 |
12 17
|
sylan9eq |
⊢ ( ( ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = 𝑣 ∧ ( ( 𝑀 ∈ LMod ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) ∧ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) = ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ) ) → 𝑣 = ( 0g ‘ 𝑀 ) ) |
19 |
18
|
exp32 |
⊢ ( ( ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ( ·𝑠 ‘ 𝑀 ) 𝑣 ) = 𝑣 → ( ( 𝑀 ∈ LMod ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑀 ) ) = ( 1r ‘ ( Scalar ‘ 𝑀 ) ) → 𝑣 = ( 0g ‘ 𝑀 ) ) ) ) |
20 |
10 19
|
mpcom |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑀 ) ) = ( 1r ‘ ( Scalar ‘ 𝑀 ) ) → 𝑣 = ( 0g ‘ 𝑀 ) ) ) |
21 |
20
|
com12 |
⊢ ( ( 0g ‘ ( Scalar ‘ 𝑀 ) ) = ( 1r ‘ ( Scalar ‘ 𝑀 ) ) → ( ( 𝑀 ∈ LMod ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → 𝑣 = ( 0g ‘ 𝑀 ) ) ) |
22 |
21
|
impl |
⊢ ( ( ( ( 0g ‘ ( Scalar ‘ 𝑀 ) ) = ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑀 ∈ LMod ) ∧ 𝑣 ∈ ( Base ‘ 𝑀 ) ) → 𝑣 = ( 0g ‘ 𝑀 ) ) |
23 |
22
|
ralrimiva |
⊢ ( ( ( 0g ‘ ( Scalar ‘ 𝑀 ) ) = ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑀 ∈ LMod ) → ∀ 𝑣 ∈ ( Base ‘ 𝑀 ) 𝑣 = ( 0g ‘ 𝑀 ) ) |
24 |
8
|
lmodbn0 |
⊢ ( 𝑀 ∈ LMod → ( Base ‘ 𝑀 ) ≠ ∅ ) |
25 |
|
eqsn |
⊢ ( ( Base ‘ 𝑀 ) ≠ ∅ → ( ( Base ‘ 𝑀 ) = { ( 0g ‘ 𝑀 ) } ↔ ∀ 𝑣 ∈ ( Base ‘ 𝑀 ) 𝑣 = ( 0g ‘ 𝑀 ) ) ) |
26 |
24 25
|
syl |
⊢ ( 𝑀 ∈ LMod → ( ( Base ‘ 𝑀 ) = { ( 0g ‘ 𝑀 ) } ↔ ∀ 𝑣 ∈ ( Base ‘ 𝑀 ) 𝑣 = ( 0g ‘ 𝑀 ) ) ) |
27 |
26
|
adantl |
⊢ ( ( ( 0g ‘ ( Scalar ‘ 𝑀 ) ) = ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑀 ∈ LMod ) → ( ( Base ‘ 𝑀 ) = { ( 0g ‘ 𝑀 ) } ↔ ∀ 𝑣 ∈ ( Base ‘ 𝑀 ) 𝑣 = ( 0g ‘ 𝑀 ) ) ) |
28 |
23 27
|
mpbird |
⊢ ( ( ( 0g ‘ ( Scalar ‘ 𝑀 ) ) = ( 1r ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑀 ∈ LMod ) → ( Base ‘ 𝑀 ) = { ( 0g ‘ 𝑀 ) } ) |
29 |
28
|
ex |
⊢ ( ( 0g ‘ ( Scalar ‘ 𝑀 ) ) = ( 1r ‘ ( Scalar ‘ 𝑀 ) ) → ( 𝑀 ∈ LMod → ( Base ‘ 𝑀 ) = { ( 0g ‘ 𝑀 ) } ) ) |
30 |
7 29
|
syl |
⊢ ( ( ( Scalar ‘ 𝑀 ) ∈ Ring ∧ ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) = 1 ) → ( 𝑀 ∈ LMod → ( Base ‘ 𝑀 ) = { ( 0g ‘ 𝑀 ) } ) ) |
31 |
30
|
ex |
⊢ ( ( Scalar ‘ 𝑀 ) ∈ Ring → ( ( ♯ ‘ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) = 1 → ( 𝑀 ∈ LMod → ( Base ‘ 𝑀 ) = { ( 0g ‘ 𝑀 ) } ) ) ) |
32 |
3 31
|
sylbird |
⊢ ( ( Scalar ‘ 𝑀 ) ∈ Ring → ( ¬ ( Scalar ‘ 𝑀 ) ∈ NzRing → ( 𝑀 ∈ LMod → ( Base ‘ 𝑀 ) = { ( 0g ‘ 𝑀 ) } ) ) ) |
33 |
32
|
com23 |
⊢ ( ( Scalar ‘ 𝑀 ) ∈ Ring → ( 𝑀 ∈ LMod → ( ¬ ( Scalar ‘ 𝑀 ) ∈ NzRing → ( Base ‘ 𝑀 ) = { ( 0g ‘ 𝑀 ) } ) ) ) |
34 |
2 33
|
mpcom |
⊢ ( 𝑀 ∈ LMod → ( ¬ ( Scalar ‘ 𝑀 ) ∈ NzRing → ( Base ‘ 𝑀 ) = { ( 0g ‘ 𝑀 ) } ) ) |
35 |
34
|
imp |
⊢ ( ( 𝑀 ∈ LMod ∧ ¬ ( Scalar ‘ 𝑀 ) ∈ NzRing ) → ( Base ‘ 𝑀 ) = { ( 0g ‘ 𝑀 ) } ) |