| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( Scalar ` M ) = ( Scalar ` M ) |
| 2 |
1
|
lmodring |
|- ( M e. LMod -> ( Scalar ` M ) e. Ring ) |
| 3 |
|
0ringnnzr |
|- ( ( Scalar ` M ) e. Ring -> ( ( # ` ( Base ` ( Scalar ` M ) ) ) = 1 <-> -. ( Scalar ` M ) e. NzRing ) ) |
| 4 |
|
eqid |
|- ( Base ` ( Scalar ` M ) ) = ( Base ` ( Scalar ` M ) ) |
| 5 |
|
eqid |
|- ( 0g ` ( Scalar ` M ) ) = ( 0g ` ( Scalar ` M ) ) |
| 6 |
|
eqid |
|- ( 1r ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) |
| 7 |
4 5 6
|
0ring01eq |
|- ( ( ( Scalar ` M ) e. Ring /\ ( # ` ( Base ` ( Scalar ` M ) ) ) = 1 ) -> ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) ) |
| 8 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
| 9 |
|
eqid |
|- ( .s ` M ) = ( .s ` M ) |
| 10 |
8 1 9 6
|
lmodvs1 |
|- ( ( M e. LMod /\ v e. ( Base ` M ) ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) = v ) |
| 11 |
|
eqcom |
|- ( ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) = v <-> v = ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) ) |
| 12 |
11
|
biimpi |
|- ( ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) = v -> v = ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) ) |
| 13 |
|
oveq1 |
|- ( ( 1r ` ( Scalar ` M ) ) = ( 0g ` ( Scalar ` M ) ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) = ( ( 0g ` ( Scalar ` M ) ) ( .s ` M ) v ) ) |
| 14 |
13
|
eqcoms |
|- ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) = ( ( 0g ` ( Scalar ` M ) ) ( .s ` M ) v ) ) |
| 15 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
| 16 |
8 1 9 5 15
|
lmod0vs |
|- ( ( M e. LMod /\ v e. ( Base ` M ) ) -> ( ( 0g ` ( Scalar ` M ) ) ( .s ` M ) v ) = ( 0g ` M ) ) |
| 17 |
14 16
|
sylan9eqr |
|- ( ( ( M e. LMod /\ v e. ( Base ` M ) ) /\ ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) = ( 0g ` M ) ) |
| 18 |
12 17
|
sylan9eq |
|- ( ( ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) = v /\ ( ( M e. LMod /\ v e. ( Base ` M ) ) /\ ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) ) ) -> v = ( 0g ` M ) ) |
| 19 |
18
|
exp32 |
|- ( ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) = v -> ( ( M e. LMod /\ v e. ( Base ` M ) ) -> ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) -> v = ( 0g ` M ) ) ) ) |
| 20 |
10 19
|
mpcom |
|- ( ( M e. LMod /\ v e. ( Base ` M ) ) -> ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) -> v = ( 0g ` M ) ) ) |
| 21 |
20
|
com12 |
|- ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) -> ( ( M e. LMod /\ v e. ( Base ` M ) ) -> v = ( 0g ` M ) ) ) |
| 22 |
21
|
impl |
|- ( ( ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) /\ M e. LMod ) /\ v e. ( Base ` M ) ) -> v = ( 0g ` M ) ) |
| 23 |
22
|
ralrimiva |
|- ( ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) /\ M e. LMod ) -> A. v e. ( Base ` M ) v = ( 0g ` M ) ) |
| 24 |
8
|
lmodbn0 |
|- ( M e. LMod -> ( Base ` M ) =/= (/) ) |
| 25 |
|
eqsn |
|- ( ( Base ` M ) =/= (/) -> ( ( Base ` M ) = { ( 0g ` M ) } <-> A. v e. ( Base ` M ) v = ( 0g ` M ) ) ) |
| 26 |
24 25
|
syl |
|- ( M e. LMod -> ( ( Base ` M ) = { ( 0g ` M ) } <-> A. v e. ( Base ` M ) v = ( 0g ` M ) ) ) |
| 27 |
26
|
adantl |
|- ( ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) /\ M e. LMod ) -> ( ( Base ` M ) = { ( 0g ` M ) } <-> A. v e. ( Base ` M ) v = ( 0g ` M ) ) ) |
| 28 |
23 27
|
mpbird |
|- ( ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) /\ M e. LMod ) -> ( Base ` M ) = { ( 0g ` M ) } ) |
| 29 |
28
|
ex |
|- ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) -> ( M e. LMod -> ( Base ` M ) = { ( 0g ` M ) } ) ) |
| 30 |
7 29
|
syl |
|- ( ( ( Scalar ` M ) e. Ring /\ ( # ` ( Base ` ( Scalar ` M ) ) ) = 1 ) -> ( M e. LMod -> ( Base ` M ) = { ( 0g ` M ) } ) ) |
| 31 |
30
|
ex |
|- ( ( Scalar ` M ) e. Ring -> ( ( # ` ( Base ` ( Scalar ` M ) ) ) = 1 -> ( M e. LMod -> ( Base ` M ) = { ( 0g ` M ) } ) ) ) |
| 32 |
3 31
|
sylbird |
|- ( ( Scalar ` M ) e. Ring -> ( -. ( Scalar ` M ) e. NzRing -> ( M e. LMod -> ( Base ` M ) = { ( 0g ` M ) } ) ) ) |
| 33 |
32
|
com23 |
|- ( ( Scalar ` M ) e. Ring -> ( M e. LMod -> ( -. ( Scalar ` M ) e. NzRing -> ( Base ` M ) = { ( 0g ` M ) } ) ) ) |
| 34 |
2 33
|
mpcom |
|- ( M e. LMod -> ( -. ( Scalar ` M ) e. NzRing -> ( Base ` M ) = { ( 0g ` M ) } ) ) |
| 35 |
34
|
imp |
|- ( ( M e. LMod /\ -. ( Scalar ` M ) e. NzRing ) -> ( Base ` M ) = { ( 0g ` M ) } ) |