Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Scalar ` M ) = ( Scalar ` M ) |
2 |
1
|
lmodring |
|- ( M e. LMod -> ( Scalar ` M ) e. Ring ) |
3 |
|
0ringnnzr |
|- ( ( Scalar ` M ) e. Ring -> ( ( # ` ( Base ` ( Scalar ` M ) ) ) = 1 <-> -. ( Scalar ` M ) e. NzRing ) ) |
4 |
|
eqid |
|- ( Base ` ( Scalar ` M ) ) = ( Base ` ( Scalar ` M ) ) |
5 |
|
eqid |
|- ( 0g ` ( Scalar ` M ) ) = ( 0g ` ( Scalar ` M ) ) |
6 |
|
eqid |
|- ( 1r ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) |
7 |
4 5 6
|
0ring01eq |
|- ( ( ( Scalar ` M ) e. Ring /\ ( # ` ( Base ` ( Scalar ` M ) ) ) = 1 ) -> ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) ) |
8 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
9 |
|
eqid |
|- ( .s ` M ) = ( .s ` M ) |
10 |
8 1 9 6
|
lmodvs1 |
|- ( ( M e. LMod /\ v e. ( Base ` M ) ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) = v ) |
11 |
|
eqcom |
|- ( ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) = v <-> v = ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) ) |
12 |
11
|
biimpi |
|- ( ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) = v -> v = ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) ) |
13 |
|
oveq1 |
|- ( ( 1r ` ( Scalar ` M ) ) = ( 0g ` ( Scalar ` M ) ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) = ( ( 0g ` ( Scalar ` M ) ) ( .s ` M ) v ) ) |
14 |
13
|
eqcoms |
|- ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) = ( ( 0g ` ( Scalar ` M ) ) ( .s ` M ) v ) ) |
15 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
16 |
8 1 9 5 15
|
lmod0vs |
|- ( ( M e. LMod /\ v e. ( Base ` M ) ) -> ( ( 0g ` ( Scalar ` M ) ) ( .s ` M ) v ) = ( 0g ` M ) ) |
17 |
14 16
|
sylan9eqr |
|- ( ( ( M e. LMod /\ v e. ( Base ` M ) ) /\ ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) = ( 0g ` M ) ) |
18 |
12 17
|
sylan9eq |
|- ( ( ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) = v /\ ( ( M e. LMod /\ v e. ( Base ` M ) ) /\ ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) ) ) -> v = ( 0g ` M ) ) |
19 |
18
|
exp32 |
|- ( ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) = v -> ( ( M e. LMod /\ v e. ( Base ` M ) ) -> ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) -> v = ( 0g ` M ) ) ) ) |
20 |
10 19
|
mpcom |
|- ( ( M e. LMod /\ v e. ( Base ` M ) ) -> ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) -> v = ( 0g ` M ) ) ) |
21 |
20
|
com12 |
|- ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) -> ( ( M e. LMod /\ v e. ( Base ` M ) ) -> v = ( 0g ` M ) ) ) |
22 |
21
|
impl |
|- ( ( ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) /\ M e. LMod ) /\ v e. ( Base ` M ) ) -> v = ( 0g ` M ) ) |
23 |
22
|
ralrimiva |
|- ( ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) /\ M e. LMod ) -> A. v e. ( Base ` M ) v = ( 0g ` M ) ) |
24 |
8
|
lmodbn0 |
|- ( M e. LMod -> ( Base ` M ) =/= (/) ) |
25 |
|
eqsn |
|- ( ( Base ` M ) =/= (/) -> ( ( Base ` M ) = { ( 0g ` M ) } <-> A. v e. ( Base ` M ) v = ( 0g ` M ) ) ) |
26 |
24 25
|
syl |
|- ( M e. LMod -> ( ( Base ` M ) = { ( 0g ` M ) } <-> A. v e. ( Base ` M ) v = ( 0g ` M ) ) ) |
27 |
26
|
adantl |
|- ( ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) /\ M e. LMod ) -> ( ( Base ` M ) = { ( 0g ` M ) } <-> A. v e. ( Base ` M ) v = ( 0g ` M ) ) ) |
28 |
23 27
|
mpbird |
|- ( ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) /\ M e. LMod ) -> ( Base ` M ) = { ( 0g ` M ) } ) |
29 |
28
|
ex |
|- ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) -> ( M e. LMod -> ( Base ` M ) = { ( 0g ` M ) } ) ) |
30 |
7 29
|
syl |
|- ( ( ( Scalar ` M ) e. Ring /\ ( # ` ( Base ` ( Scalar ` M ) ) ) = 1 ) -> ( M e. LMod -> ( Base ` M ) = { ( 0g ` M ) } ) ) |
31 |
30
|
ex |
|- ( ( Scalar ` M ) e. Ring -> ( ( # ` ( Base ` ( Scalar ` M ) ) ) = 1 -> ( M e. LMod -> ( Base ` M ) = { ( 0g ` M ) } ) ) ) |
32 |
3 31
|
sylbird |
|- ( ( Scalar ` M ) e. Ring -> ( -. ( Scalar ` M ) e. NzRing -> ( M e. LMod -> ( Base ` M ) = { ( 0g ` M ) } ) ) ) |
33 |
32
|
com23 |
|- ( ( Scalar ` M ) e. Ring -> ( M e. LMod -> ( -. ( Scalar ` M ) e. NzRing -> ( Base ` M ) = { ( 0g ` M ) } ) ) ) |
34 |
2 33
|
mpcom |
|- ( M e. LMod -> ( -. ( Scalar ` M ) e. NzRing -> ( Base ` M ) = { ( 0g ` M ) } ) ) |
35 |
34
|
imp |
|- ( ( M e. LMod /\ -. ( Scalar ` M ) e. NzRing ) -> ( Base ` M ) = { ( 0g ` M ) } ) |