| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Scalar ` M ) = ( Scalar ` M ) | 
						
							| 2 | 1 | lmodring |  |-  ( M e. LMod -> ( Scalar ` M ) e. Ring ) | 
						
							| 3 |  | 0ringnnzr |  |-  ( ( Scalar ` M ) e. Ring -> ( ( # ` ( Base ` ( Scalar ` M ) ) ) = 1 <-> -. ( Scalar ` M ) e. NzRing ) ) | 
						
							| 4 |  | eqid |  |-  ( Base ` ( Scalar ` M ) ) = ( Base ` ( Scalar ` M ) ) | 
						
							| 5 |  | eqid |  |-  ( 0g ` ( Scalar ` M ) ) = ( 0g ` ( Scalar ` M ) ) | 
						
							| 6 |  | eqid |  |-  ( 1r ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) | 
						
							| 7 | 4 5 6 | 0ring01eq |  |-  ( ( ( Scalar ` M ) e. Ring /\ ( # ` ( Base ` ( Scalar ` M ) ) ) = 1 ) -> ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) ) | 
						
							| 8 |  | eqid |  |-  ( Base ` M ) = ( Base ` M ) | 
						
							| 9 |  | eqid |  |-  ( .s ` M ) = ( .s ` M ) | 
						
							| 10 | 8 1 9 6 | lmodvs1 |  |-  ( ( M e. LMod /\ v e. ( Base ` M ) ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) = v ) | 
						
							| 11 |  | eqcom |  |-  ( ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) = v <-> v = ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) ) | 
						
							| 12 | 11 | biimpi |  |-  ( ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) = v -> v = ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) ) | 
						
							| 13 |  | oveq1 |  |-  ( ( 1r ` ( Scalar ` M ) ) = ( 0g ` ( Scalar ` M ) ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) = ( ( 0g ` ( Scalar ` M ) ) ( .s ` M ) v ) ) | 
						
							| 14 | 13 | eqcoms |  |-  ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) = ( ( 0g ` ( Scalar ` M ) ) ( .s ` M ) v ) ) | 
						
							| 15 |  | eqid |  |-  ( 0g ` M ) = ( 0g ` M ) | 
						
							| 16 | 8 1 9 5 15 | lmod0vs |  |-  ( ( M e. LMod /\ v e. ( Base ` M ) ) -> ( ( 0g ` ( Scalar ` M ) ) ( .s ` M ) v ) = ( 0g ` M ) ) | 
						
							| 17 | 14 16 | sylan9eqr |  |-  ( ( ( M e. LMod /\ v e. ( Base ` M ) ) /\ ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) = ( 0g ` M ) ) | 
						
							| 18 | 12 17 | sylan9eq |  |-  ( ( ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) = v /\ ( ( M e. LMod /\ v e. ( Base ` M ) ) /\ ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) ) ) -> v = ( 0g ` M ) ) | 
						
							| 19 | 18 | exp32 |  |-  ( ( ( 1r ` ( Scalar ` M ) ) ( .s ` M ) v ) = v -> ( ( M e. LMod /\ v e. ( Base ` M ) ) -> ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) -> v = ( 0g ` M ) ) ) ) | 
						
							| 20 | 10 19 | mpcom |  |-  ( ( M e. LMod /\ v e. ( Base ` M ) ) -> ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) -> v = ( 0g ` M ) ) ) | 
						
							| 21 | 20 | com12 |  |-  ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) -> ( ( M e. LMod /\ v e. ( Base ` M ) ) -> v = ( 0g ` M ) ) ) | 
						
							| 22 | 21 | impl |  |-  ( ( ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) /\ M e. LMod ) /\ v e. ( Base ` M ) ) -> v = ( 0g ` M ) ) | 
						
							| 23 | 22 | ralrimiva |  |-  ( ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) /\ M e. LMod ) -> A. v e. ( Base ` M ) v = ( 0g ` M ) ) | 
						
							| 24 | 8 | lmodbn0 |  |-  ( M e. LMod -> ( Base ` M ) =/= (/) ) | 
						
							| 25 |  | eqsn |  |-  ( ( Base ` M ) =/= (/) -> ( ( Base ` M ) = { ( 0g ` M ) } <-> A. v e. ( Base ` M ) v = ( 0g ` M ) ) ) | 
						
							| 26 | 24 25 | syl |  |-  ( M e. LMod -> ( ( Base ` M ) = { ( 0g ` M ) } <-> A. v e. ( Base ` M ) v = ( 0g ` M ) ) ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) /\ M e. LMod ) -> ( ( Base ` M ) = { ( 0g ` M ) } <-> A. v e. ( Base ` M ) v = ( 0g ` M ) ) ) | 
						
							| 28 | 23 27 | mpbird |  |-  ( ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) /\ M e. LMod ) -> ( Base ` M ) = { ( 0g ` M ) } ) | 
						
							| 29 | 28 | ex |  |-  ( ( 0g ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) -> ( M e. LMod -> ( Base ` M ) = { ( 0g ` M ) } ) ) | 
						
							| 30 | 7 29 | syl |  |-  ( ( ( Scalar ` M ) e. Ring /\ ( # ` ( Base ` ( Scalar ` M ) ) ) = 1 ) -> ( M e. LMod -> ( Base ` M ) = { ( 0g ` M ) } ) ) | 
						
							| 31 | 30 | ex |  |-  ( ( Scalar ` M ) e. Ring -> ( ( # ` ( Base ` ( Scalar ` M ) ) ) = 1 -> ( M e. LMod -> ( Base ` M ) = { ( 0g ` M ) } ) ) ) | 
						
							| 32 | 3 31 | sylbird |  |-  ( ( Scalar ` M ) e. Ring -> ( -. ( Scalar ` M ) e. NzRing -> ( M e. LMod -> ( Base ` M ) = { ( 0g ` M ) } ) ) ) | 
						
							| 33 | 32 | com23 |  |-  ( ( Scalar ` M ) e. Ring -> ( M e. LMod -> ( -. ( Scalar ` M ) e. NzRing -> ( Base ` M ) = { ( 0g ` M ) } ) ) ) | 
						
							| 34 | 2 33 | mpcom |  |-  ( M e. LMod -> ( -. ( Scalar ` M ) e. NzRing -> ( Base ` M ) = { ( 0g ` M ) } ) ) | 
						
							| 35 | 34 | imp |  |-  ( ( M e. LMod /\ -. ( Scalar ` M ) e. NzRing ) -> ( Base ` M ) = { ( 0g ` M ) } ) |