| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpolpolsat.a | ⊢ 𝐴  =  ( LSAtoms ‘ 𝑊 ) | 
						
							| 2 |  | lpolpolsat.p | ⊢ 𝑃  =  ( LPol ‘ 𝑊 ) | 
						
							| 3 |  | lpolpolsat.w | ⊢ ( 𝜑  →  𝑊  ∈  𝑋 ) | 
						
							| 4 |  | lpolpolsat.o | ⊢ ( 𝜑  →   ⊥   ∈  𝑃 ) | 
						
							| 5 |  | lpolpolsat.q | ⊢ ( 𝜑  →  𝑄  ∈  𝐴 ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 7 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 8 |  | eqid | ⊢ ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑊 ) | 
						
							| 9 |  | eqid | ⊢ ( LSHyp ‘ 𝑊 )  =  ( LSHyp ‘ 𝑊 ) | 
						
							| 10 | 6 7 8 1 9 2 | islpolN | ⊢ ( 𝑊  ∈  𝑋  →  (  ⊥   ∈  𝑃  ↔  (  ⊥  : 𝒫  ( Base ‘ 𝑊 ) ⟶ ( LSubSp ‘ 𝑊 )  ∧  ( (  ⊥  ‘ ( Base ‘ 𝑊 ) )  =  { ( 0g ‘ 𝑊 ) }  ∧  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ⊆  ( Base ‘ 𝑊 )  ∧  𝑦  ⊆  ( Base ‘ 𝑊 )  ∧  𝑥  ⊆  𝑦 )  →  (  ⊥  ‘ 𝑦 )  ⊆  (  ⊥  ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  𝐴 ( (  ⊥  ‘ 𝑥 )  ∈  ( LSHyp ‘ 𝑊 )  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 ) ) ) ) ) | 
						
							| 11 | 3 10 | syl | ⊢ ( 𝜑  →  (  ⊥   ∈  𝑃  ↔  (  ⊥  : 𝒫  ( Base ‘ 𝑊 ) ⟶ ( LSubSp ‘ 𝑊 )  ∧  ( (  ⊥  ‘ ( Base ‘ 𝑊 ) )  =  { ( 0g ‘ 𝑊 ) }  ∧  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ⊆  ( Base ‘ 𝑊 )  ∧  𝑦  ⊆  ( Base ‘ 𝑊 )  ∧  𝑥  ⊆  𝑦 )  →  (  ⊥  ‘ 𝑦 )  ⊆  (  ⊥  ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  𝐴 ( (  ⊥  ‘ 𝑥 )  ∈  ( LSHyp ‘ 𝑊 )  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 ) ) ) ) ) | 
						
							| 12 | 4 11 | mpbid | ⊢ ( 𝜑  →  (  ⊥  : 𝒫  ( Base ‘ 𝑊 ) ⟶ ( LSubSp ‘ 𝑊 )  ∧  ( (  ⊥  ‘ ( Base ‘ 𝑊 ) )  =  { ( 0g ‘ 𝑊 ) }  ∧  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ⊆  ( Base ‘ 𝑊 )  ∧  𝑦  ⊆  ( Base ‘ 𝑊 )  ∧  𝑥  ⊆  𝑦 )  →  (  ⊥  ‘ 𝑦 )  ⊆  (  ⊥  ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  𝐴 ( (  ⊥  ‘ 𝑥 )  ∈  ( LSHyp ‘ 𝑊 )  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 ) ) ) ) | 
						
							| 13 |  | simpr3 | ⊢ ( (  ⊥  : 𝒫  ( Base ‘ 𝑊 ) ⟶ ( LSubSp ‘ 𝑊 )  ∧  ( (  ⊥  ‘ ( Base ‘ 𝑊 ) )  =  { ( 0g ‘ 𝑊 ) }  ∧  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ⊆  ( Base ‘ 𝑊 )  ∧  𝑦  ⊆  ( Base ‘ 𝑊 )  ∧  𝑥  ⊆  𝑦 )  →  (  ⊥  ‘ 𝑦 )  ⊆  (  ⊥  ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  𝐴 ( (  ⊥  ‘ 𝑥 )  ∈  ( LSHyp ‘ 𝑊 )  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 ) ) )  →  ∀ 𝑥  ∈  𝐴 ( (  ⊥  ‘ 𝑥 )  ∈  ( LSHyp ‘ 𝑊 )  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑥  =  𝑄  →  (  ⊥  ‘ 𝑥 )  =  (  ⊥  ‘ 𝑄 ) ) | 
						
							| 15 | 14 | eleq1d | ⊢ ( 𝑥  =  𝑄  →  ( (  ⊥  ‘ 𝑥 )  ∈  ( LSHyp ‘ 𝑊 )  ↔  (  ⊥  ‘ 𝑄 )  ∈  ( LSHyp ‘ 𝑊 ) ) ) | 
						
							| 16 |  | 2fveq3 | ⊢ ( 𝑥  =  𝑄  →  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  (  ⊥  ‘ (  ⊥  ‘ 𝑄 ) ) ) | 
						
							| 17 |  | id | ⊢ ( 𝑥  =  𝑄  →  𝑥  =  𝑄 ) | 
						
							| 18 | 16 17 | eqeq12d | ⊢ ( 𝑥  =  𝑄  →  ( (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥  ↔  (  ⊥  ‘ (  ⊥  ‘ 𝑄 ) )  =  𝑄 ) ) | 
						
							| 19 | 15 18 | anbi12d | ⊢ ( 𝑥  =  𝑄  →  ( ( (  ⊥  ‘ 𝑥 )  ∈  ( LSHyp ‘ 𝑊 )  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 )  ↔  ( (  ⊥  ‘ 𝑄 )  ∈  ( LSHyp ‘ 𝑊 )  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑄 ) )  =  𝑄 ) ) ) | 
						
							| 20 | 19 | rspcv | ⊢ ( 𝑄  ∈  𝐴  →  ( ∀ 𝑥  ∈  𝐴 ( (  ⊥  ‘ 𝑥 )  ∈  ( LSHyp ‘ 𝑊 )  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 )  →  ( (  ⊥  ‘ 𝑄 )  ∈  ( LSHyp ‘ 𝑊 )  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑄 ) )  =  𝑄 ) ) ) | 
						
							| 21 | 5 20 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝐴 ( (  ⊥  ‘ 𝑥 )  ∈  ( LSHyp ‘ 𝑊 )  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 )  →  ( (  ⊥  ‘ 𝑄 )  ∈  ( LSHyp ‘ 𝑊 )  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑄 ) )  =  𝑄 ) ) ) | 
						
							| 22 |  | simpr | ⊢ ( ( (  ⊥  ‘ 𝑄 )  ∈  ( LSHyp ‘ 𝑊 )  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑄 ) )  =  𝑄 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑄 ) )  =  𝑄 ) | 
						
							| 23 | 13 21 22 | syl56 | ⊢ ( 𝜑  →  ( (  ⊥  : 𝒫  ( Base ‘ 𝑊 ) ⟶ ( LSubSp ‘ 𝑊 )  ∧  ( (  ⊥  ‘ ( Base ‘ 𝑊 ) )  =  { ( 0g ‘ 𝑊 ) }  ∧  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ⊆  ( Base ‘ 𝑊 )  ∧  𝑦  ⊆  ( Base ‘ 𝑊 )  ∧  𝑥  ⊆  𝑦 )  →  (  ⊥  ‘ 𝑦 )  ⊆  (  ⊥  ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  𝐴 ( (  ⊥  ‘ 𝑥 )  ∈  ( LSHyp ‘ 𝑊 )  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 ) ) )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑄 ) )  =  𝑄 ) ) | 
						
							| 24 | 12 23 | mpd | ⊢ ( 𝜑  →  (  ⊥  ‘ (  ⊥  ‘ 𝑄 ) )  =  𝑄 ) |