Metamath Proof Explorer


Theorem dochpolN

Description: The subspace orthocomplement for the DVecH vector space is a polarity. (Contributed by NM, 27-Dec-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dochpol.h 𝐻 = ( LHyp ‘ 𝐾 )
dochpol.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
dochpol.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dochpol.p 𝑃 = ( LPol ‘ 𝑈 )
dochpol.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion dochpolN ( 𝜑𝑃 )

Proof

Step Hyp Ref Expression
1 dochpol.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dochpol.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 dochpol.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 dochpol.p 𝑃 = ( LPol ‘ 𝑈 )
5 dochpol.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
6 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
7 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
8 eqid ( 0g𝑈 ) = ( 0g𝑈 )
9 eqid ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 )
10 eqid ( LSHyp ‘ 𝑈 ) = ( LSHyp ‘ 𝑈 )
11 3 fvexi 𝑈 ∈ V
12 11 a1i ( 𝜑𝑈 ∈ V )
13 eqid ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
14 1 13 3 6 2 5 dochfN ( 𝜑 : 𝒫 ( Base ‘ 𝑈 ) ⟶ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
15 1 3 13 7 dihsslss ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ⊆ ( LSubSp ‘ 𝑈 ) )
16 5 15 syl ( 𝜑 → ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ⊆ ( LSubSp ‘ 𝑈 ) )
17 14 16 fssd ( 𝜑 : 𝒫 ( Base ‘ 𝑈 ) ⟶ ( LSubSp ‘ 𝑈 ) )
18 1 3 2 6 8 doch1 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ‘ ( Base ‘ 𝑈 ) ) = { ( 0g𝑈 ) } )
19 5 18 syl ( 𝜑 → ( ‘ ( Base ‘ 𝑈 ) ) = { ( 0g𝑈 ) } )
20 5 adantr ( ( 𝜑 ∧ ( 𝑥 ⊆ ( Base ‘ 𝑈 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑈 ) ∧ 𝑥𝑦 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
21 simpr2 ( ( 𝜑 ∧ ( 𝑥 ⊆ ( Base ‘ 𝑈 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑈 ) ∧ 𝑥𝑦 ) ) → 𝑦 ⊆ ( Base ‘ 𝑈 ) )
22 simpr3 ( ( 𝜑 ∧ ( 𝑥 ⊆ ( Base ‘ 𝑈 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑈 ) ∧ 𝑥𝑦 ) ) → 𝑥𝑦 )
23 1 3 6 2 dochss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑈 ) ∧ 𝑥𝑦 ) → ( 𝑦 ) ⊆ ( 𝑥 ) )
24 20 21 22 23 syl3anc ( ( 𝜑 ∧ ( 𝑥 ⊆ ( Base ‘ 𝑈 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑈 ) ∧ 𝑥𝑦 ) ) → ( 𝑦 ) ⊆ ( 𝑥 ) )
25 5 adantr ( ( 𝜑𝑥 ∈ ( LSAtoms ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
26 simpr ( ( 𝜑𝑥 ∈ ( LSAtoms ‘ 𝑈 ) ) → 𝑥 ∈ ( LSAtoms ‘ 𝑈 ) )
27 1 3 2 9 10 25 26 dochsatshp ( ( 𝜑𝑥 ∈ ( LSAtoms ‘ 𝑈 ) ) → ( 𝑥 ) ∈ ( LSHyp ‘ 𝑈 ) )
28 1 3 13 9 dih1dimat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑥 ∈ ( LSAtoms ‘ 𝑈 ) ) → 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
29 25 26 28 syl2anc ( ( 𝜑𝑥 ∈ ( LSAtoms ‘ 𝑈 ) ) → 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
30 1 13 2 dochoc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ‘ ( 𝑥 ) ) = 𝑥 )
31 25 29 30 syl2anc ( ( 𝜑𝑥 ∈ ( LSAtoms ‘ 𝑈 ) ) → ( ‘ ( 𝑥 ) ) = 𝑥 )
32 6 7 8 9 10 4 12 17 19 24 27 31 islpoldN ( 𝜑𝑃 )