| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dochpol.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | dochpol.o | ⊢  ⊥   =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | dochpol.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | dochpol.p | ⊢ 𝑃  =  ( LPol ‘ 𝑈 ) | 
						
							| 5 |  | dochpol.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 ) | 
						
							| 7 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 8 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 9 |  | eqid | ⊢ ( LSAtoms ‘ 𝑈 )  =  ( LSAtoms ‘ 𝑈 ) | 
						
							| 10 |  | eqid | ⊢ ( LSHyp ‘ 𝑈 )  =  ( LSHyp ‘ 𝑈 ) | 
						
							| 11 | 3 | fvexi | ⊢ 𝑈  ∈  V | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  𝑈  ∈  V ) | 
						
							| 13 |  | eqid | ⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 14 | 1 13 3 6 2 5 | dochfN | ⊢ ( 𝜑  →   ⊥  : 𝒫  ( Base ‘ 𝑈 ) ⟶ ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 15 | 1 3 13 7 | dihsslss | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )  ⊆  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 16 | 5 15 | syl | ⊢ ( 𝜑  →  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )  ⊆  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 17 | 14 16 | fssd | ⊢ ( 𝜑  →   ⊥  : 𝒫  ( Base ‘ 𝑈 ) ⟶ ( LSubSp ‘ 𝑈 ) ) | 
						
							| 18 | 1 3 2 6 8 | doch1 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  (  ⊥  ‘ ( Base ‘ 𝑈 ) )  =  { ( 0g ‘ 𝑈 ) } ) | 
						
							| 19 | 5 18 | syl | ⊢ ( 𝜑  →  (  ⊥  ‘ ( Base ‘ 𝑈 ) )  =  { ( 0g ‘ 𝑈 ) } ) | 
						
							| 20 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ⊆  ( Base ‘ 𝑈 )  ∧  𝑦  ⊆  ( Base ‘ 𝑈 )  ∧  𝑥  ⊆  𝑦 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 21 |  | simpr2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ⊆  ( Base ‘ 𝑈 )  ∧  𝑦  ⊆  ( Base ‘ 𝑈 )  ∧  𝑥  ⊆  𝑦 ) )  →  𝑦  ⊆  ( Base ‘ 𝑈 ) ) | 
						
							| 22 |  | simpr3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ⊆  ( Base ‘ 𝑈 )  ∧  𝑦  ⊆  ( Base ‘ 𝑈 )  ∧  𝑥  ⊆  𝑦 ) )  →  𝑥  ⊆  𝑦 ) | 
						
							| 23 | 1 3 6 2 | dochss | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑦  ⊆  ( Base ‘ 𝑈 )  ∧  𝑥  ⊆  𝑦 )  →  (  ⊥  ‘ 𝑦 )  ⊆  (  ⊥  ‘ 𝑥 ) ) | 
						
							| 24 | 20 21 22 23 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ⊆  ( Base ‘ 𝑈 )  ∧  𝑦  ⊆  ( Base ‘ 𝑈 )  ∧  𝑥  ⊆  𝑦 ) )  →  (  ⊥  ‘ 𝑦 )  ⊆  (  ⊥  ‘ 𝑥 ) ) | 
						
							| 25 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( LSAtoms ‘ 𝑈 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 26 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( LSAtoms ‘ 𝑈 ) )  →  𝑥  ∈  ( LSAtoms ‘ 𝑈 ) ) | 
						
							| 27 | 1 3 2 9 10 25 26 | dochsatshp | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( LSAtoms ‘ 𝑈 ) )  →  (  ⊥  ‘ 𝑥 )  ∈  ( LSHyp ‘ 𝑈 ) ) | 
						
							| 28 | 1 3 13 9 | dih1dimat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑥  ∈  ( LSAtoms ‘ 𝑈 ) )  →  𝑥  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 29 | 25 26 28 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( LSAtoms ‘ 𝑈 ) )  →  𝑥  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 30 | 1 13 2 | dochoc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑥  ∈  ran  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 ) | 
						
							| 31 | 25 29 30 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( LSAtoms ‘ 𝑈 ) )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 ) | 
						
							| 32 | 6 7 8 9 10 4 12 17 19 24 27 31 | islpoldN | ⊢ ( 𝜑  →   ⊥   ∈  𝑃 ) |