Step |
Hyp |
Ref |
Expression |
1 |
|
dochpol.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dochpol.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dochpol.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dochpol.p |
⊢ 𝑃 = ( LPol ‘ 𝑈 ) |
5 |
|
dochpol.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
7 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
8 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
9 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 ) |
10 |
|
eqid |
⊢ ( LSHyp ‘ 𝑈 ) = ( LSHyp ‘ 𝑈 ) |
11 |
3
|
fvexi |
⊢ 𝑈 ∈ V |
12 |
11
|
a1i |
⊢ ( 𝜑 → 𝑈 ∈ V ) |
13 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
14 |
1 13 3 6 2 5
|
dochfN |
⊢ ( 𝜑 → ⊥ : 𝒫 ( Base ‘ 𝑈 ) ⟶ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
15 |
1 3 13 7
|
dihsslss |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ⊆ ( LSubSp ‘ 𝑈 ) ) |
16 |
5 15
|
syl |
⊢ ( 𝜑 → ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ⊆ ( LSubSp ‘ 𝑈 ) ) |
17 |
14 16
|
fssd |
⊢ ( 𝜑 → ⊥ : 𝒫 ( Base ‘ 𝑈 ) ⟶ ( LSubSp ‘ 𝑈 ) ) |
18 |
1 3 2 6 8
|
doch1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ⊥ ‘ ( Base ‘ 𝑈 ) ) = { ( 0g ‘ 𝑈 ) } ) |
19 |
5 18
|
syl |
⊢ ( 𝜑 → ( ⊥ ‘ ( Base ‘ 𝑈 ) ) = { ( 0g ‘ 𝑈 ) } ) |
20 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ ( Base ‘ 𝑈 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑈 ) ∧ 𝑥 ⊆ 𝑦 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
21 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ ( Base ‘ 𝑈 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑈 ) ∧ 𝑥 ⊆ 𝑦 ) ) → 𝑦 ⊆ ( Base ‘ 𝑈 ) ) |
22 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ ( Base ‘ 𝑈 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑈 ) ∧ 𝑥 ⊆ 𝑦 ) ) → 𝑥 ⊆ 𝑦 ) |
23 |
1 3 6 2
|
dochss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑈 ) ∧ 𝑥 ⊆ 𝑦 ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑥 ) ) |
24 |
20 21 22 23
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ ( Base ‘ 𝑈 ) ∧ 𝑦 ⊆ ( Base ‘ 𝑈 ) ∧ 𝑥 ⊆ 𝑦 ) ) → ( ⊥ ‘ 𝑦 ) ⊆ ( ⊥ ‘ 𝑥 ) ) |
25 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( LSAtoms ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
26 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( LSAtoms ‘ 𝑈 ) ) → 𝑥 ∈ ( LSAtoms ‘ 𝑈 ) ) |
27 |
1 3 2 9 10 25 26
|
dochsatshp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( LSAtoms ‘ 𝑈 ) ) → ( ⊥ ‘ 𝑥 ) ∈ ( LSHyp ‘ 𝑈 ) ) |
28 |
1 3 13 9
|
dih1dimat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ ( LSAtoms ‘ 𝑈 ) ) → 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
29 |
25 26 28
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( LSAtoms ‘ 𝑈 ) ) → 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
30 |
1 13 2
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) |
31 |
25 29 30
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( LSAtoms ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑥 ) ) = 𝑥 ) |
32 |
6 7 8 9 10 4 12 17 19 24 27 31
|
islpoldN |
⊢ ( 𝜑 → ⊥ ∈ 𝑃 ) |