Metamath Proof Explorer


Theorem dochpolN

Description: The subspace orthocomplement for the DVecH vector space is a polarity. (Contributed by NM, 27-Dec-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dochpol.h H = LHyp K
dochpol.o ˙ = ocH K W
dochpol.u U = DVecH K W
dochpol.p P = LPol U
dochpol.k φ K HL W H
Assertion dochpolN φ ˙ P

Proof

Step Hyp Ref Expression
1 dochpol.h H = LHyp K
2 dochpol.o ˙ = ocH K W
3 dochpol.u U = DVecH K W
4 dochpol.p P = LPol U
5 dochpol.k φ K HL W H
6 eqid Base U = Base U
7 eqid LSubSp U = LSubSp U
8 eqid 0 U = 0 U
9 eqid LSAtoms U = LSAtoms U
10 eqid LSHyp U = LSHyp U
11 3 fvexi U V
12 11 a1i φ U V
13 eqid DIsoH K W = DIsoH K W
14 1 13 3 6 2 5 dochfN φ ˙ : 𝒫 Base U ran DIsoH K W
15 1 3 13 7 dihsslss K HL W H ran DIsoH K W LSubSp U
16 5 15 syl φ ran DIsoH K W LSubSp U
17 14 16 fssd φ ˙ : 𝒫 Base U LSubSp U
18 1 3 2 6 8 doch1 K HL W H ˙ Base U = 0 U
19 5 18 syl φ ˙ Base U = 0 U
20 5 adantr φ x Base U y Base U x y K HL W H
21 simpr2 φ x Base U y Base U x y y Base U
22 simpr3 φ x Base U y Base U x y x y
23 1 3 6 2 dochss K HL W H y Base U x y ˙ y ˙ x
24 20 21 22 23 syl3anc φ x Base U y Base U x y ˙ y ˙ x
25 5 adantr φ x LSAtoms U K HL W H
26 simpr φ x LSAtoms U x LSAtoms U
27 1 3 2 9 10 25 26 dochsatshp φ x LSAtoms U ˙ x LSHyp U
28 1 3 13 9 dih1dimat K HL W H x LSAtoms U x ran DIsoH K W
29 25 26 28 syl2anc φ x LSAtoms U x ran DIsoH K W
30 1 13 2 dochoc K HL W H x ran DIsoH K W ˙ ˙ x = x
31 25 29 30 syl2anc φ x LSAtoms U ˙ ˙ x = x
32 6 7 8 9 10 4 12 17 19 24 27 31 islpoldN φ ˙ P