Metamath Proof Explorer


Theorem dochpolN

Description: The subspace orthocomplement for the DVecH vector space is a polarity. (Contributed by NM, 27-Dec-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dochpol.h H=LHypK
dochpol.o ˙=ocHKW
dochpol.u U=DVecHKW
dochpol.p P=LPolU
dochpol.k φKHLWH
Assertion dochpolN φ˙P

Proof

Step Hyp Ref Expression
1 dochpol.h H=LHypK
2 dochpol.o ˙=ocHKW
3 dochpol.u U=DVecHKW
4 dochpol.p P=LPolU
5 dochpol.k φKHLWH
6 eqid BaseU=BaseU
7 eqid LSubSpU=LSubSpU
8 eqid 0U=0U
9 eqid LSAtomsU=LSAtomsU
10 eqid LSHypU=LSHypU
11 3 fvexi UV
12 11 a1i φUV
13 eqid DIsoHKW=DIsoHKW
14 1 13 3 6 2 5 dochfN φ˙:𝒫BaseUranDIsoHKW
15 1 3 13 7 dihsslss KHLWHranDIsoHKWLSubSpU
16 5 15 syl φranDIsoHKWLSubSpU
17 14 16 fssd φ˙:𝒫BaseULSubSpU
18 1 3 2 6 8 doch1 KHLWH˙BaseU=0U
19 5 18 syl φ˙BaseU=0U
20 5 adantr φxBaseUyBaseUxyKHLWH
21 simpr2 φxBaseUyBaseUxyyBaseU
22 simpr3 φxBaseUyBaseUxyxy
23 1 3 6 2 dochss KHLWHyBaseUxy˙y˙x
24 20 21 22 23 syl3anc φxBaseUyBaseUxy˙y˙x
25 5 adantr φxLSAtomsUKHLWH
26 simpr φxLSAtomsUxLSAtomsU
27 1 3 2 9 10 25 26 dochsatshp φxLSAtomsU˙xLSHypU
28 1 3 13 9 dih1dimat KHLWHxLSAtomsUxranDIsoHKW
29 25 26 28 syl2anc φxLSAtomsUxranDIsoHKW
30 1 13 2 dochoc KHLWHxranDIsoHKW˙˙x=x
31 25 29 30 syl2anc φxLSAtomsU˙˙x=x
32 6 7 8 9 10 4 12 17 19 24 27 31 islpoldN φ˙P