Step |
Hyp |
Ref |
Expression |
1 |
|
dochpol.h |
|- H = ( LHyp ` K ) |
2 |
|
dochpol.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
dochpol.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
dochpol.p |
|- P = ( LPol ` U ) |
5 |
|
dochpol.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
6 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
7 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
8 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
9 |
|
eqid |
|- ( LSAtoms ` U ) = ( LSAtoms ` U ) |
10 |
|
eqid |
|- ( LSHyp ` U ) = ( LSHyp ` U ) |
11 |
3
|
fvexi |
|- U e. _V |
12 |
11
|
a1i |
|- ( ph -> U e. _V ) |
13 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
14 |
1 13 3 6 2 5
|
dochfN |
|- ( ph -> ._|_ : ~P ( Base ` U ) --> ran ( ( DIsoH ` K ) ` W ) ) |
15 |
1 3 13 7
|
dihsslss |
|- ( ( K e. HL /\ W e. H ) -> ran ( ( DIsoH ` K ) ` W ) C_ ( LSubSp ` U ) ) |
16 |
5 15
|
syl |
|- ( ph -> ran ( ( DIsoH ` K ) ` W ) C_ ( LSubSp ` U ) ) |
17 |
14 16
|
fssd |
|- ( ph -> ._|_ : ~P ( Base ` U ) --> ( LSubSp ` U ) ) |
18 |
1 3 2 6 8
|
doch1 |
|- ( ( K e. HL /\ W e. H ) -> ( ._|_ ` ( Base ` U ) ) = { ( 0g ` U ) } ) |
19 |
5 18
|
syl |
|- ( ph -> ( ._|_ ` ( Base ` U ) ) = { ( 0g ` U ) } ) |
20 |
5
|
adantr |
|- ( ( ph /\ ( x C_ ( Base ` U ) /\ y C_ ( Base ` U ) /\ x C_ y ) ) -> ( K e. HL /\ W e. H ) ) |
21 |
|
simpr2 |
|- ( ( ph /\ ( x C_ ( Base ` U ) /\ y C_ ( Base ` U ) /\ x C_ y ) ) -> y C_ ( Base ` U ) ) |
22 |
|
simpr3 |
|- ( ( ph /\ ( x C_ ( Base ` U ) /\ y C_ ( Base ` U ) /\ x C_ y ) ) -> x C_ y ) |
23 |
1 3 6 2
|
dochss |
|- ( ( ( K e. HL /\ W e. H ) /\ y C_ ( Base ` U ) /\ x C_ y ) -> ( ._|_ ` y ) C_ ( ._|_ ` x ) ) |
24 |
20 21 22 23
|
syl3anc |
|- ( ( ph /\ ( x C_ ( Base ` U ) /\ y C_ ( Base ` U ) /\ x C_ y ) ) -> ( ._|_ ` y ) C_ ( ._|_ ` x ) ) |
25 |
5
|
adantr |
|- ( ( ph /\ x e. ( LSAtoms ` U ) ) -> ( K e. HL /\ W e. H ) ) |
26 |
|
simpr |
|- ( ( ph /\ x e. ( LSAtoms ` U ) ) -> x e. ( LSAtoms ` U ) ) |
27 |
1 3 2 9 10 25 26
|
dochsatshp |
|- ( ( ph /\ x e. ( LSAtoms ` U ) ) -> ( ._|_ ` x ) e. ( LSHyp ` U ) ) |
28 |
1 3 13 9
|
dih1dimat |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. ( LSAtoms ` U ) ) -> x e. ran ( ( DIsoH ` K ) ` W ) ) |
29 |
25 26 28
|
syl2anc |
|- ( ( ph /\ x e. ( LSAtoms ` U ) ) -> x e. ran ( ( DIsoH ` K ) ` W ) ) |
30 |
1 13 2
|
dochoc |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ._|_ ` ( ._|_ ` x ) ) = x ) |
31 |
25 29 30
|
syl2anc |
|- ( ( ph /\ x e. ( LSAtoms ` U ) ) -> ( ._|_ ` ( ._|_ ` x ) ) = x ) |
32 |
6 7 8 9 10 4 12 17 19 24 27 31
|
islpoldN |
|- ( ph -> ._|_ e. P ) |