| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dochpol.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | dochpol.o |  |-  ._|_ = ( ( ocH ` K ) ` W ) | 
						
							| 3 |  | dochpol.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | dochpol.p |  |-  P = ( LPol ` U ) | 
						
							| 5 |  | dochpol.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 6 |  | eqid |  |-  ( Base ` U ) = ( Base ` U ) | 
						
							| 7 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 8 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 9 |  | eqid |  |-  ( LSAtoms ` U ) = ( LSAtoms ` U ) | 
						
							| 10 |  | eqid |  |-  ( LSHyp ` U ) = ( LSHyp ` U ) | 
						
							| 11 | 3 | fvexi |  |-  U e. _V | 
						
							| 12 | 11 | a1i |  |-  ( ph -> U e. _V ) | 
						
							| 13 |  | eqid |  |-  ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) | 
						
							| 14 | 1 13 3 6 2 5 | dochfN |  |-  ( ph -> ._|_ : ~P ( Base ` U ) --> ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 15 | 1 3 13 7 | dihsslss |  |-  ( ( K e. HL /\ W e. H ) -> ran ( ( DIsoH ` K ) ` W ) C_ ( LSubSp ` U ) ) | 
						
							| 16 | 5 15 | syl |  |-  ( ph -> ran ( ( DIsoH ` K ) ` W ) C_ ( LSubSp ` U ) ) | 
						
							| 17 | 14 16 | fssd |  |-  ( ph -> ._|_ : ~P ( Base ` U ) --> ( LSubSp ` U ) ) | 
						
							| 18 | 1 3 2 6 8 | doch1 |  |-  ( ( K e. HL /\ W e. H ) -> ( ._|_ ` ( Base ` U ) ) = { ( 0g ` U ) } ) | 
						
							| 19 | 5 18 | syl |  |-  ( ph -> ( ._|_ ` ( Base ` U ) ) = { ( 0g ` U ) } ) | 
						
							| 20 | 5 | adantr |  |-  ( ( ph /\ ( x C_ ( Base ` U ) /\ y C_ ( Base ` U ) /\ x C_ y ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 21 |  | simpr2 |  |-  ( ( ph /\ ( x C_ ( Base ` U ) /\ y C_ ( Base ` U ) /\ x C_ y ) ) -> y C_ ( Base ` U ) ) | 
						
							| 22 |  | simpr3 |  |-  ( ( ph /\ ( x C_ ( Base ` U ) /\ y C_ ( Base ` U ) /\ x C_ y ) ) -> x C_ y ) | 
						
							| 23 | 1 3 6 2 | dochss |  |-  ( ( ( K e. HL /\ W e. H ) /\ y C_ ( Base ` U ) /\ x C_ y ) -> ( ._|_ ` y ) C_ ( ._|_ ` x ) ) | 
						
							| 24 | 20 21 22 23 | syl3anc |  |-  ( ( ph /\ ( x C_ ( Base ` U ) /\ y C_ ( Base ` U ) /\ x C_ y ) ) -> ( ._|_ ` y ) C_ ( ._|_ ` x ) ) | 
						
							| 25 | 5 | adantr |  |-  ( ( ph /\ x e. ( LSAtoms ` U ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 26 |  | simpr |  |-  ( ( ph /\ x e. ( LSAtoms ` U ) ) -> x e. ( LSAtoms ` U ) ) | 
						
							| 27 | 1 3 2 9 10 25 26 | dochsatshp |  |-  ( ( ph /\ x e. ( LSAtoms ` U ) ) -> ( ._|_ ` x ) e. ( LSHyp ` U ) ) | 
						
							| 28 | 1 3 13 9 | dih1dimat |  |-  ( ( ( K e. HL /\ W e. H ) /\ x e. ( LSAtoms ` U ) ) -> x e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 29 | 25 26 28 | syl2anc |  |-  ( ( ph /\ x e. ( LSAtoms ` U ) ) -> x e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 30 | 1 13 2 | dochoc |  |-  ( ( ( K e. HL /\ W e. H ) /\ x e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ._|_ ` ( ._|_ ` x ) ) = x ) | 
						
							| 31 | 25 29 30 | syl2anc |  |-  ( ( ph /\ x e. ( LSAtoms ` U ) ) -> ( ._|_ ` ( ._|_ ` x ) ) = x ) | 
						
							| 32 | 6 7 8 9 10 4 12 17 19 24 27 31 | islpoldN |  |-  ( ph -> ._|_ e. P ) |