Metamath Proof Explorer


Theorem lspf

Description: The span operator on a left module maps subsets to subsets. (Contributed by Stefan O'Rear, 12-Dec-2014)

Ref Expression
Hypotheses lspval.v 𝑉 = ( Base ‘ 𝑊 )
lspval.s 𝑆 = ( LSubSp ‘ 𝑊 )
lspval.n 𝑁 = ( LSpan ‘ 𝑊 )
Assertion lspf ( 𝑊 ∈ LMod → 𝑁 : 𝒫 𝑉𝑆 )

Proof

Step Hyp Ref Expression
1 lspval.v 𝑉 = ( Base ‘ 𝑊 )
2 lspval.s 𝑆 = ( LSubSp ‘ 𝑊 )
3 lspval.n 𝑁 = ( LSpan ‘ 𝑊 )
4 1 2 3 lspfval ( 𝑊 ∈ LMod → 𝑁 = ( 𝑠 ∈ 𝒫 𝑉 { 𝑝𝑆𝑠𝑝 } ) )
5 simpl ( ( 𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉 ) → 𝑊 ∈ LMod )
6 ssrab2 { 𝑝𝑆𝑠𝑝 } ⊆ 𝑆
7 6 a1i ( ( 𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉 ) → { 𝑝𝑆𝑠𝑝 } ⊆ 𝑆 )
8 1 2 lss1 ( 𝑊 ∈ LMod → 𝑉𝑆 )
9 elpwi ( 𝑠 ∈ 𝒫 𝑉𝑠𝑉 )
10 sseq2 ( 𝑝 = 𝑉 → ( 𝑠𝑝𝑠𝑉 ) )
11 10 rspcev ( ( 𝑉𝑆𝑠𝑉 ) → ∃ 𝑝𝑆 𝑠𝑝 )
12 8 9 11 syl2an ( ( 𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉 ) → ∃ 𝑝𝑆 𝑠𝑝 )
13 rabn0 ( { 𝑝𝑆𝑠𝑝 } ≠ ∅ ↔ ∃ 𝑝𝑆 𝑠𝑝 )
14 12 13 sylibr ( ( 𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉 ) → { 𝑝𝑆𝑠𝑝 } ≠ ∅ )
15 2 lssintcl ( ( 𝑊 ∈ LMod ∧ { 𝑝𝑆𝑠𝑝 } ⊆ 𝑆 ∧ { 𝑝𝑆𝑠𝑝 } ≠ ∅ ) → { 𝑝𝑆𝑠𝑝 } ∈ 𝑆 )
16 5 7 14 15 syl3anc ( ( 𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉 ) → { 𝑝𝑆𝑠𝑝 } ∈ 𝑆 )
17 4 16 fmpt3d ( 𝑊 ∈ LMod → 𝑁 : 𝒫 𝑉𝑆 )