| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspval.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lspval.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
lspval.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 4 |
1 2 3
|
lspfval |
⊢ ( 𝑊 ∈ LMod → 𝑁 = ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ) ) |
| 5 |
|
simpl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉 ) → 𝑊 ∈ LMod ) |
| 6 |
|
ssrab2 |
⊢ { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ⊆ 𝑆 |
| 7 |
6
|
a1i |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉 ) → { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ⊆ 𝑆 ) |
| 8 |
1 2
|
lss1 |
⊢ ( 𝑊 ∈ LMod → 𝑉 ∈ 𝑆 ) |
| 9 |
|
elpwi |
⊢ ( 𝑠 ∈ 𝒫 𝑉 → 𝑠 ⊆ 𝑉 ) |
| 10 |
|
sseq2 |
⊢ ( 𝑝 = 𝑉 → ( 𝑠 ⊆ 𝑝 ↔ 𝑠 ⊆ 𝑉 ) ) |
| 11 |
10
|
rspcev |
⊢ ( ( 𝑉 ∈ 𝑆 ∧ 𝑠 ⊆ 𝑉 ) → ∃ 𝑝 ∈ 𝑆 𝑠 ⊆ 𝑝 ) |
| 12 |
8 9 11
|
syl2an |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉 ) → ∃ 𝑝 ∈ 𝑆 𝑠 ⊆ 𝑝 ) |
| 13 |
|
rabn0 |
⊢ ( { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ≠ ∅ ↔ ∃ 𝑝 ∈ 𝑆 𝑠 ⊆ 𝑝 ) |
| 14 |
12 13
|
sylibr |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉 ) → { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ≠ ∅ ) |
| 15 |
2
|
lssintcl |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ⊆ 𝑆 ∧ { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ≠ ∅ ) → ∩ { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ∈ 𝑆 ) |
| 16 |
5 7 14 15
|
syl3anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉 ) → ∩ { 𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝 } ∈ 𝑆 ) |
| 17 |
4 16
|
fmpt3d |
⊢ ( 𝑊 ∈ LMod → 𝑁 : 𝒫 𝑉 ⟶ 𝑆 ) |