Metamath Proof Explorer


Theorem ltexpi

Description: Ordering on positive integers in terms of existence of sum. (Contributed by NM, 15-Mar-1996) (Revised by Mario Carneiro, 14-Jun-2013) (New usage is discouraged.)

Ref Expression
Assertion ltexpi ( ( 𝐴N𝐵N ) → ( 𝐴 <N 𝐵 ↔ ∃ 𝑥N ( 𝐴 +N 𝑥 ) = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 pinn ( 𝐴N𝐴 ∈ ω )
2 pinn ( 𝐵N𝐵 ∈ ω )
3 nnaordex ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴𝐵 ↔ ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) )
4 1 2 3 syl2an ( ( 𝐴N𝐵N ) → ( 𝐴𝐵 ↔ ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) )
5 ltpiord ( ( 𝐴N𝐵N ) → ( 𝐴 <N 𝐵𝐴𝐵 ) )
6 addpiord ( ( 𝐴N𝑥N ) → ( 𝐴 +N 𝑥 ) = ( 𝐴 +o 𝑥 ) )
7 6 eqeq1d ( ( 𝐴N𝑥N ) → ( ( 𝐴 +N 𝑥 ) = 𝐵 ↔ ( 𝐴 +o 𝑥 ) = 𝐵 ) )
8 7 pm5.32da ( 𝐴N → ( ( 𝑥N ∧ ( 𝐴 +N 𝑥 ) = 𝐵 ) ↔ ( 𝑥N ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) )
9 elni2 ( 𝑥N ↔ ( 𝑥 ∈ ω ∧ ∅ ∈ 𝑥 ) )
10 9 anbi1i ( ( 𝑥N ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ↔ ( ( 𝑥 ∈ ω ∧ ∅ ∈ 𝑥 ) ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) )
11 anass ( ( ( 𝑥 ∈ ω ∧ ∅ ∈ 𝑥 ) ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ↔ ( 𝑥 ∈ ω ∧ ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) )
12 10 11 bitri ( ( 𝑥N ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ↔ ( 𝑥 ∈ ω ∧ ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) )
13 8 12 bitrdi ( 𝐴N → ( ( 𝑥N ∧ ( 𝐴 +N 𝑥 ) = 𝐵 ) ↔ ( 𝑥 ∈ ω ∧ ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) ) )
14 13 rexbidv2 ( 𝐴N → ( ∃ 𝑥N ( 𝐴 +N 𝑥 ) = 𝐵 ↔ ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) )
15 14 adantr ( ( 𝐴N𝐵N ) → ( ∃ 𝑥N ( 𝐴 +N 𝑥 ) = 𝐵 ↔ ∃ 𝑥 ∈ ω ( ∅ ∈ 𝑥 ∧ ( 𝐴 +o 𝑥 ) = 𝐵 ) ) )
16 4 5 15 3bitr4d ( ( 𝐴N𝐵N ) → ( 𝐴 <N 𝐵 ↔ ∃ 𝑥N ( 𝐴 +N 𝑥 ) = 𝐵 ) )