Metamath Proof Explorer


Theorem ltrncnvatb

Description: The converse of the lattice translation of an atom is an atom. (Contributed by NM, 2-Jun-2012)

Ref Expression
Hypotheses ltrnatb.b 𝐵 = ( Base ‘ 𝐾 )
ltrnatb.a 𝐴 = ( Atoms ‘ 𝐾 )
ltrnatb.h 𝐻 = ( LHyp ‘ 𝐾 )
ltrnatb.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion ltrncnvatb ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝑃𝐵 ) → ( 𝑃𝐴 ↔ ( 𝐹𝑃 ) ∈ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ltrnatb.b 𝐵 = ( Base ‘ 𝐾 )
2 ltrnatb.a 𝐴 = ( Atoms ‘ 𝐾 )
3 ltrnatb.h 𝐻 = ( LHyp ‘ 𝐾 )
4 ltrnatb.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 1 3 4 ltrn1o ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → 𝐹 : 𝐵1-1-onto𝐵 )
6 f1ocnvdm ( ( 𝐹 : 𝐵1-1-onto𝐵𝑃𝐵 ) → ( 𝐹𝑃 ) ∈ 𝐵 )
7 5 6 stoic3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝑃𝐵 ) → ( 𝐹𝑃 ) ∈ 𝐵 )
8 1 2 3 4 ltrnatb ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝐹𝑃 ) ∈ 𝐵 ) → ( ( 𝐹𝑃 ) ∈ 𝐴 ↔ ( 𝐹 ‘ ( 𝐹𝑃 ) ) ∈ 𝐴 ) )
9 7 8 syld3an3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝑃𝐵 ) → ( ( 𝐹𝑃 ) ∈ 𝐴 ↔ ( 𝐹 ‘ ( 𝐹𝑃 ) ) ∈ 𝐴 ) )
10 f1ocnvfv2 ( ( 𝐹 : 𝐵1-1-onto𝐵𝑃𝐵 ) → ( 𝐹 ‘ ( 𝐹𝑃 ) ) = 𝑃 )
11 5 10 stoic3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝑃𝐵 ) → ( 𝐹 ‘ ( 𝐹𝑃 ) ) = 𝑃 )
12 11 eleq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝑃𝐵 ) → ( ( 𝐹 ‘ ( 𝐹𝑃 ) ) ∈ 𝐴𝑃𝐴 ) )
13 9 12 bitr2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝑃𝐵 ) → ( 𝑃𝐴 ↔ ( 𝐹𝑃 ) ∈ 𝐴 ) )