| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltrnatb.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
ltrnatb.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 3 |
|
ltrnatb.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
ltrnatb.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → 𝑃 ∈ 𝐵 ) |
| 6 |
1 3 4
|
ltrncl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝐵 ) |
| 7 |
5 6
|
2thd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → ( 𝑃 ∈ 𝐵 ↔ ( 𝐹 ‘ 𝑃 ) ∈ 𝐵 ) ) |
| 8 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
|
simp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → 𝐹 ∈ 𝑇 ) |
| 10 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → 𝐾 ∈ HL ) |
| 11 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
| 12 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
| 13 |
1 12
|
op0cl |
⊢ ( 𝐾 ∈ OP → ( 0. ‘ 𝐾 ) ∈ 𝐵 ) |
| 14 |
10 11 13
|
3syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → ( 0. ‘ 𝐾 ) ∈ 𝐵 ) |
| 15 |
|
eqid |
⊢ ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 ) |
| 16 |
1 15 3 4
|
ltrncvr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 0. ‘ 𝐾 ) ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ) ) → ( ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) 𝑃 ↔ ( 𝐹 ‘ ( 0. ‘ 𝐾 ) ) ( ⋖ ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) |
| 17 |
8 9 14 5 16
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → ( ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) 𝑃 ↔ ( 𝐹 ‘ ( 0. ‘ 𝐾 ) ) ( ⋖ ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) |
| 18 |
10 11
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
| 19 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → 𝑊 ∈ 𝐻 ) |
| 20 |
1 3
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
| 21 |
19 20
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → 𝑊 ∈ 𝐵 ) |
| 22 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 23 |
1 22 12
|
op0le |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑊 ∈ 𝐵 ) → ( 0. ‘ 𝐾 ) ( le ‘ 𝐾 ) 𝑊 ) |
| 24 |
18 21 23
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → ( 0. ‘ 𝐾 ) ( le ‘ 𝐾 ) 𝑊 ) |
| 25 |
1 22 3 4
|
ltrnval1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 0. ‘ 𝐾 ) ∈ 𝐵 ∧ ( 0. ‘ 𝐾 ) ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐹 ‘ ( 0. ‘ 𝐾 ) ) = ( 0. ‘ 𝐾 ) ) |
| 26 |
8 9 14 24 25
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → ( 𝐹 ‘ ( 0. ‘ 𝐾 ) ) = ( 0. ‘ 𝐾 ) ) |
| 27 |
26
|
breq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → ( ( 𝐹 ‘ ( 0. ‘ 𝐾 ) ) ( ⋖ ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ↔ ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) |
| 28 |
17 27
|
bitrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → ( ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) 𝑃 ↔ ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) |
| 29 |
7 28
|
anbi12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → ( ( 𝑃 ∈ 𝐵 ∧ ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) 𝑃 ) ↔ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐵 ∧ ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) |
| 30 |
1 12 15 2
|
isat |
⊢ ( 𝐾 ∈ HL → ( 𝑃 ∈ 𝐴 ↔ ( 𝑃 ∈ 𝐵 ∧ ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) 𝑃 ) ) ) |
| 31 |
10 30
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → ( 𝑃 ∈ 𝐴 ↔ ( 𝑃 ∈ 𝐵 ∧ ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) 𝑃 ) ) ) |
| 32 |
1 12 15 2
|
isat |
⊢ ( 𝐾 ∈ HL → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ↔ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐵 ∧ ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) |
| 33 |
10 32
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ↔ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐵 ∧ ( 0. ‘ 𝐾 ) ( ⋖ ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) |
| 34 |
29 31 33
|
3bitr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐵 ) → ( 𝑃 ∈ 𝐴 ↔ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) ) |