Metamath Proof Explorer


Theorem ltrncnvatb

Description: The converse of the lattice translation of an atom is an atom. (Contributed by NM, 2-Jun-2012)

Ref Expression
Hypotheses ltrnatb.b B=BaseK
ltrnatb.a A=AtomsK
ltrnatb.h H=LHypK
ltrnatb.t T=LTrnKW
Assertion ltrncnvatb KHLWHFTPBPAF-1PA

Proof

Step Hyp Ref Expression
1 ltrnatb.b B=BaseK
2 ltrnatb.a A=AtomsK
3 ltrnatb.h H=LHypK
4 ltrnatb.t T=LTrnKW
5 1 3 4 ltrn1o KHLWHFTF:B1-1 ontoB
6 f1ocnvdm F:B1-1 ontoBPBF-1PB
7 5 6 stoic3 KHLWHFTPBF-1PB
8 1 2 3 4 ltrnatb KHLWHFTF-1PBF-1PAFF-1PA
9 7 8 syld3an3 KHLWHFTPBF-1PAFF-1PA
10 f1ocnvfv2 F:B1-1 ontoBPBFF-1P=P
11 5 10 stoic3 KHLWHFTPBFF-1P=P
12 11 eleq1d KHLWHFTPBFF-1PAPA
13 9 12 bitr2d KHLWHFTPBPAF-1PA