| Step |
Hyp |
Ref |
Expression |
| 1 |
|
marypha2.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 2 |
|
marypha2.b |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ Fin ) |
| 3 |
|
marypha2.c |
⊢ ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → 𝑑 ≼ ∪ ( 𝐹 “ 𝑑 ) ) |
| 4 |
2 1
|
unirnffid |
⊢ ( 𝜑 → ∪ ran 𝐹 ∈ Fin ) |
| 5 |
|
eqid |
⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) = ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) |
| 6 |
5
|
marypha2lem1 |
⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ⊆ ( 𝐴 × ∪ ran 𝐹 ) |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ⊆ ( 𝐴 × ∪ ran 𝐹 ) ) |
| 8 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 9 |
5
|
marypha2lem4 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑑 ⊆ 𝐴 ) → ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) “ 𝑑 ) = ∪ ( 𝐹 “ 𝑑 ) ) |
| 10 |
8 9
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) “ 𝑑 ) = ∪ ( 𝐹 “ 𝑑 ) ) |
| 11 |
3 10
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → 𝑑 ≼ ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) “ 𝑑 ) ) |
| 12 |
1 4 7 11
|
marypha1 |
⊢ ( 𝜑 → ∃ 𝑔 ∈ 𝒫 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 ) |
| 13 |
|
df-rex |
⊢ ( ∃ 𝑔 ∈ 𝒫 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 ↔ ∃ 𝑔 ( 𝑔 ∈ 𝒫 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 ) ) |
| 14 |
|
ssv |
⊢ ∪ ran 𝐹 ⊆ V |
| 15 |
|
f1ss |
⊢ ( ( 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 ∧ ∪ ran 𝐹 ⊆ V ) → 𝑔 : 𝐴 –1-1→ V ) |
| 16 |
14 15
|
mpan2 |
⊢ ( 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 → 𝑔 : 𝐴 –1-1→ V ) |
| 17 |
16
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝒫 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 ) ) → 𝑔 : 𝐴 –1-1→ V ) |
| 18 |
|
elpwi |
⊢ ( 𝑔 ∈ 𝒫 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) → 𝑔 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ) |
| 19 |
18
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝒫 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 ) ) → 𝑔 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ) |
| 20 |
|
f1fn |
⊢ ( 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 → 𝑔 Fn 𝐴 ) |
| 21 |
20
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝒫 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 ) ) → 𝑔 Fn 𝐴 ) |
| 22 |
5
|
marypha2lem3 |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑔 Fn 𝐴 ) → ( 𝑔 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
| 23 |
8 21 22
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝒫 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 ) ) → ( 𝑔 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
| 24 |
19 23
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝒫 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) |
| 25 |
17 24
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝒫 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 ) ) → ( 𝑔 : 𝐴 –1-1→ V ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
| 26 |
25
|
ex |
⊢ ( 𝜑 → ( ( 𝑔 ∈ 𝒫 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 ) → ( 𝑔 : 𝐴 –1-1→ V ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 27 |
26
|
eximdv |
⊢ ( 𝜑 → ( ∃ 𝑔 ( 𝑔 ∈ 𝒫 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 ) → ∃ 𝑔 ( 𝑔 : 𝐴 –1-1→ V ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 28 |
13 27
|
biimtrid |
⊢ ( 𝜑 → ( ∃ 𝑔 ∈ 𝒫 ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐹 ‘ 𝑥 ) ) 𝑔 : 𝐴 –1-1→ ∪ ran 𝐹 → ∃ 𝑔 ( 𝑔 : 𝐴 –1-1→ V ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 29 |
12 28
|
mpd |
⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : 𝐴 –1-1→ V ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑔 ‘ 𝑥 ) ∈ ( 𝐹 ‘ 𝑥 ) ) ) |