Metamath Proof Explorer


Theorem marypha2

Description: Version of marypha1 using a functional family of sets instead of a relation. (Contributed by Stefan O'Rear, 20-Feb-2015)

Ref Expression
Hypotheses marypha2.a φAFin
marypha2.b φF:AFin
marypha2.c φdAdFd
Assertion marypha2 φgg:A1-1VxAgxFx

Proof

Step Hyp Ref Expression
1 marypha2.a φAFin
2 marypha2.b φF:AFin
3 marypha2.c φdAdFd
4 2 1 unirnffid φranFFin
5 eqid xAx×Fx=xAx×Fx
6 5 marypha2lem1 xAx×FxA×ranF
7 6 a1i φxAx×FxA×ranF
8 2 ffnd φFFnA
9 5 marypha2lem4 FFnAdAxAx×Fxd=Fd
10 8 9 sylan φdAxAx×Fxd=Fd
11 3 10 breqtrrd φdAdxAx×Fxd
12 1 4 7 11 marypha1 φg𝒫xAx×Fxg:A1-1ranF
13 df-rex g𝒫xAx×Fxg:A1-1ranFgg𝒫xAx×Fxg:A1-1ranF
14 ssv ranFV
15 f1ss g:A1-1ranFranFVg:A1-1V
16 14 15 mpan2 g:A1-1ranFg:A1-1V
17 16 ad2antll φg𝒫xAx×Fxg:A1-1ranFg:A1-1V
18 elpwi g𝒫xAx×FxgxAx×Fx
19 18 ad2antrl φg𝒫xAx×Fxg:A1-1ranFgxAx×Fx
20 f1fn g:A1-1ranFgFnA
21 20 ad2antll φg𝒫xAx×Fxg:A1-1ranFgFnA
22 5 marypha2lem3 FFnAgFnAgxAx×FxxAgxFx
23 8 21 22 syl2an2r φg𝒫xAx×Fxg:A1-1ranFgxAx×FxxAgxFx
24 19 23 mpbid φg𝒫xAx×Fxg:A1-1ranFxAgxFx
25 17 24 jca φg𝒫xAx×Fxg:A1-1ranFg:A1-1VxAgxFx
26 25 ex φg𝒫xAx×Fxg:A1-1ranFg:A1-1VxAgxFx
27 26 eximdv φgg𝒫xAx×Fxg:A1-1ranFgg:A1-1VxAgxFx
28 13 27 biimtrid φg𝒫xAx×Fxg:A1-1ranFgg:A1-1VxAgxFx
29 12 28 mpd φgg:A1-1VxAgxFx