Metamath Proof Explorer


Theorem mgmidsssn0

Description: Property of the set of identities of G . Either G has no identities, and O = (/) , or it has one and this identity is unique and identified by the 0g function. (Contributed by Mario Carneiro, 7-Dec-2014)

Ref Expression
Hypotheses mgmidsssn0.b 𝐵 = ( Base ‘ 𝐺 )
mgmidsssn0.z 0 = ( 0g𝐺 )
mgmidsssn0.p + = ( +g𝐺 )
mgmidsssn0.o 𝑂 = { 𝑥𝐵 ∣ ∀ 𝑦𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) }
Assertion mgmidsssn0 ( 𝐺𝑉𝑂 ⊆ { 0 } )

Proof

Step Hyp Ref Expression
1 mgmidsssn0.b 𝐵 = ( Base ‘ 𝐺 )
2 mgmidsssn0.z 0 = ( 0g𝐺 )
3 mgmidsssn0.p + = ( +g𝐺 )
4 mgmidsssn0.o 𝑂 = { 𝑥𝐵 ∣ ∀ 𝑦𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) }
5 simpr ( ( 𝐺𝑉 ∧ ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) ) → ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) )
6 oveq1 ( 𝑧 = 𝑥 → ( 𝑧 + 𝑦 ) = ( 𝑥 + 𝑦 ) )
7 6 eqeq1d ( 𝑧 = 𝑥 → ( ( 𝑧 + 𝑦 ) = 𝑦 ↔ ( 𝑥 + 𝑦 ) = 𝑦 ) )
8 7 ovanraleqv ( 𝑧 = 𝑥 → ( ∀ 𝑦𝐵 ( ( 𝑧 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑧 ) = 𝑦 ) ↔ ∀ 𝑦𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) )
9 8 rspcev ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) → ∃ 𝑧𝐵𝑦𝐵 ( ( 𝑧 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑧 ) = 𝑦 ) )
10 9 adantl ( ( 𝐺𝑉 ∧ ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) ) → ∃ 𝑧𝐵𝑦𝐵 ( ( 𝑧 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑧 ) = 𝑦 ) )
11 1 2 3 10 ismgmid ( ( 𝐺𝑉 ∧ ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) ) → ( ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) ↔ 0 = 𝑥 ) )
12 5 11 mpbid ( ( 𝐺𝑉 ∧ ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) ) → 0 = 𝑥 )
13 12 eqcomd ( ( 𝐺𝑉 ∧ ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) ) → 𝑥 = 0 )
14 velsn ( 𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
15 13 14 sylibr ( ( 𝐺𝑉 ∧ ( 𝑥𝐵 ∧ ∀ 𝑦𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ) ) → 𝑥 ∈ { 0 } )
16 15 expr ( ( 𝐺𝑉𝑥𝐵 ) → ( ∀ 𝑦𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) → 𝑥 ∈ { 0 } ) )
17 16 ralrimiva ( 𝐺𝑉 → ∀ 𝑥𝐵 ( ∀ 𝑦𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) → 𝑥 ∈ { 0 } ) )
18 rabss ( { 𝑥𝐵 ∣ ∀ 𝑦𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ⊆ { 0 } ↔ ∀ 𝑥𝐵 ( ∀ 𝑦𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) → 𝑥 ∈ { 0 } ) )
19 17 18 sylibr ( 𝐺𝑉 → { 𝑥𝐵 ∣ ∀ 𝑦𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ⊆ { 0 } )
20 4 19 eqsstrid ( 𝐺𝑉𝑂 ⊆ { 0 } )