Step |
Hyp |
Ref |
Expression |
1 |
|
mgmsscl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mgmsscl.s |
⊢ 𝑆 = ( Base ‘ 𝐻 ) |
3 |
|
ovres |
⊢ ( ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) 𝑌 ) ) |
4 |
3
|
3ad2ant3 |
⊢ ( ( ( 𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ) → ( 𝑋 ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) 𝑌 ) ) |
5 |
|
simp1r |
⊢ ( ( ( 𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ) → 𝐻 ∈ Mgm ) |
6 |
|
simp3 |
⊢ ( ( ( 𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ) → ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ) |
7 |
|
3anass |
⊢ ( ( 𝐻 ∈ Mgm ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ↔ ( 𝐻 ∈ Mgm ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ) ) |
8 |
5 6 7
|
sylanbrc |
⊢ ( ( ( 𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ) → ( 𝐻 ∈ Mgm ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ) |
9 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
10 |
2 9
|
mgmcl |
⊢ ( ( 𝐻 ∈ Mgm ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 ( +g ‘ 𝐻 ) 𝑌 ) ∈ 𝑆 ) |
11 |
8 10
|
syl |
⊢ ( ( ( 𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ) → ( 𝑋 ( +g ‘ 𝐻 ) 𝑌 ) ∈ 𝑆 ) |
12 |
|
oveq |
⊢ ( ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) = ( +g ‘ 𝐻 ) → ( 𝑋 ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) 𝑌 ) = ( 𝑋 ( +g ‘ 𝐻 ) 𝑌 ) ) |
13 |
12
|
eleq1d |
⊢ ( ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) = ( +g ‘ 𝐻 ) → ( ( 𝑋 ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) 𝑌 ) ∈ 𝑆 ↔ ( 𝑋 ( +g ‘ 𝐻 ) 𝑌 ) ∈ 𝑆 ) ) |
14 |
13
|
eqcoms |
⊢ ( ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) → ( ( 𝑋 ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) 𝑌 ) ∈ 𝑆 ↔ ( 𝑋 ( +g ‘ 𝐻 ) 𝑌 ) ∈ 𝑆 ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) → ( ( 𝑋 ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) 𝑌 ) ∈ 𝑆 ↔ ( 𝑋 ( +g ‘ 𝐻 ) 𝑌 ) ∈ 𝑆 ) ) |
16 |
15
|
3ad2ant2 |
⊢ ( ( ( 𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ) → ( ( 𝑋 ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) 𝑌 ) ∈ 𝑆 ↔ ( 𝑋 ( +g ‘ 𝐻 ) 𝑌 ) ∈ 𝑆 ) ) |
17 |
11 16
|
mpbird |
⊢ ( ( ( 𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ) → ( 𝑋 ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) 𝑌 ) ∈ 𝑆 ) |
18 |
4 17
|
eqeltrrd |
⊢ ( ( ( 𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm ) ∧ ( 𝑆 ⊆ 𝐵 ∧ ( +g ‘ 𝐻 ) = ( ( +g ‘ 𝐺 ) ↾ ( 𝑆 × 𝑆 ) ) ) ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) ) → ( 𝑋 ( +g ‘ 𝐺 ) 𝑌 ) ∈ 𝑆 ) |