Metamath Proof Explorer


Theorem mgmsscl

Description: If the base set of a magma is contained in the base set of another magma, and the group operation of the magma is the restriction of the group operation of the other magma to its base set, then the base set of the magma is closed under the group operation of the other magma. Formerly part of proof of grpissubg . (Contributed by AV, 17-Feb-2024)

Ref Expression
Hypotheses mgmsscl.b B=BaseG
mgmsscl.s S=BaseH
Assertion mgmsscl GMgmHMgmSB+H=+GS×SXSYSX+GYS

Proof

Step Hyp Ref Expression
1 mgmsscl.b B=BaseG
2 mgmsscl.s S=BaseH
3 ovres XSYSX+GS×SY=X+GY
4 3 3ad2ant3 GMgmHMgmSB+H=+GS×SXSYSX+GS×SY=X+GY
5 simp1r GMgmHMgmSB+H=+GS×SXSYSHMgm
6 simp3 GMgmHMgmSB+H=+GS×SXSYSXSYS
7 3anass HMgmXSYSHMgmXSYS
8 5 6 7 sylanbrc GMgmHMgmSB+H=+GS×SXSYSHMgmXSYS
9 eqid +H=+H
10 2 9 mgmcl HMgmXSYSX+HYS
11 8 10 syl GMgmHMgmSB+H=+GS×SXSYSX+HYS
12 oveq +GS×S=+HX+GS×SY=X+HY
13 12 eleq1d +GS×S=+HX+GS×SYSX+HYS
14 13 eqcoms +H=+GS×SX+GS×SYSX+HYS
15 14 adantl SB+H=+GS×SX+GS×SYSX+HYS
16 15 3ad2ant2 GMgmHMgmSB+H=+GS×SXSYSX+GS×SYSX+HYS
17 11 16 mpbird GMgmHMgmSB+H=+GS×SXSYSX+GS×SYS
18 4 17 eqeltrrd GMgmHMgmSB+H=+GS×SXSYSX+GYS