Step |
Hyp |
Ref |
Expression |
1 |
|
mndinvmod.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mndinvmod.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
mndinvmod.p |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
|
mndinvmod.m |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
5 |
|
mndinvmod.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
6 |
|
simpl |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → 𝑤 ∈ 𝐵 ) |
7 |
1 3 2
|
mndrid |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑤 ∈ 𝐵 ) → ( 𝑤 + 0 ) = 𝑤 ) |
8 |
4 6 7
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ( 𝑤 + 0 ) = 𝑤 ) |
9 |
8
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑤 = ( 𝑤 + 0 ) ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ∧ ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) ) ) → 𝑤 = ( 𝑤 + 0 ) ) |
11 |
|
oveq2 |
⊢ ( 0 = ( 𝐴 + 𝑣 ) → ( 𝑤 + 0 ) = ( 𝑤 + ( 𝐴 + 𝑣 ) ) ) |
12 |
11
|
eqcoms |
⊢ ( ( 𝐴 + 𝑣 ) = 0 → ( 𝑤 + 0 ) = ( 𝑤 + ( 𝐴 + 𝑣 ) ) ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) → ( 𝑤 + 0 ) = ( 𝑤 + ( 𝐴 + 𝑣 ) ) ) |
14 |
13
|
adantl |
⊢ ( ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ∧ ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) ) → ( 𝑤 + 0 ) = ( 𝑤 + ( 𝐴 + 𝑣 ) ) ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ∧ ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) ) ) → ( 𝑤 + 0 ) = ( 𝑤 + ( 𝐴 + 𝑣 ) ) ) |
16 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → 𝐺 ∈ Mnd ) |
17 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑤 ∈ 𝐵 ) |
18 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → 𝐴 ∈ 𝐵 ) |
19 |
|
simpr |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → 𝑣 ∈ 𝐵 ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → 𝑣 ∈ 𝐵 ) |
21 |
1 3
|
mndass |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑤 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ( ( 𝑤 + 𝐴 ) + 𝑣 ) = ( 𝑤 + ( 𝐴 + 𝑣 ) ) ) |
22 |
21
|
eqcomd |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑤 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ( 𝑤 + ( 𝐴 + 𝑣 ) ) = ( ( 𝑤 + 𝐴 ) + 𝑣 ) ) |
23 |
16 17 18 20 22
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ( 𝑤 + ( 𝐴 + 𝑣 ) ) = ( ( 𝑤 + 𝐴 ) + 𝑣 ) ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ∧ ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) ) ) → ( 𝑤 + ( 𝐴 + 𝑣 ) ) = ( ( 𝑤 + 𝐴 ) + 𝑣 ) ) |
25 |
|
oveq1 |
⊢ ( ( 𝑤 + 𝐴 ) = 0 → ( ( 𝑤 + 𝐴 ) + 𝑣 ) = ( 0 + 𝑣 ) ) |
26 |
25
|
adantr |
⊢ ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) → ( ( 𝑤 + 𝐴 ) + 𝑣 ) = ( 0 + 𝑣 ) ) |
27 |
26
|
adantr |
⊢ ( ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ∧ ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) ) → ( ( 𝑤 + 𝐴 ) + 𝑣 ) = ( 0 + 𝑣 ) ) |
28 |
27
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ∧ ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) ) ) → ( ( 𝑤 + 𝐴 ) + 𝑣 ) = ( 0 + 𝑣 ) ) |
29 |
1 3 2
|
mndlid |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑣 ∈ 𝐵 ) → ( 0 + 𝑣 ) = 𝑣 ) |
30 |
4 19 29
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ( 0 + 𝑣 ) = 𝑣 ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ∧ ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) ) ) → ( 0 + 𝑣 ) = 𝑣 ) |
32 |
24 28 31
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ∧ ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) ) ) → ( 𝑤 + ( 𝐴 + 𝑣 ) ) = 𝑣 ) |
33 |
10 15 32
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) ∧ ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ∧ ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) ) ) → 𝑤 = 𝑣 ) |
34 |
33
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ( ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ∧ ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) ) → 𝑤 = 𝑣 ) ) |
35 |
34
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ∧ ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) ) → 𝑤 = 𝑣 ) ) |
36 |
|
oveq1 |
⊢ ( 𝑤 = 𝑣 → ( 𝑤 + 𝐴 ) = ( 𝑣 + 𝐴 ) ) |
37 |
36
|
eqeq1d |
⊢ ( 𝑤 = 𝑣 → ( ( 𝑤 + 𝐴 ) = 0 ↔ ( 𝑣 + 𝐴 ) = 0 ) ) |
38 |
|
oveq2 |
⊢ ( 𝑤 = 𝑣 → ( 𝐴 + 𝑤 ) = ( 𝐴 + 𝑣 ) ) |
39 |
38
|
eqeq1d |
⊢ ( 𝑤 = 𝑣 → ( ( 𝐴 + 𝑤 ) = 0 ↔ ( 𝐴 + 𝑣 ) = 0 ) ) |
40 |
37 39
|
anbi12d |
⊢ ( 𝑤 = 𝑣 → ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ↔ ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) ) ) |
41 |
40
|
rmo4 |
⊢ ( ∃* 𝑤 ∈ 𝐵 ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ↔ ∀ 𝑤 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( ( ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ∧ ( ( 𝑣 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑣 ) = 0 ) ) → 𝑤 = 𝑣 ) ) |
42 |
35 41
|
sylibr |
⊢ ( 𝜑 → ∃* 𝑤 ∈ 𝐵 ( ( 𝑤 + 𝐴 ) = 0 ∧ ( 𝐴 + 𝑤 ) = 0 ) ) |