| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mndinvmod.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | mndinvmod.0 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | mndinvmod.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 4 |  | mndinvmod.m | ⊢ ( 𝜑  →  𝐺  ∈  Mnd ) | 
						
							| 5 |  | mndinvmod.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐵 ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝑤  ∈  𝐵  ∧  𝑣  ∈  𝐵 )  →  𝑤  ∈  𝐵 ) | 
						
							| 7 | 1 3 2 | mndrid | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑤  ∈  𝐵 )  →  ( 𝑤  +   0  )  =  𝑤 ) | 
						
							| 8 | 4 6 7 | syl2an | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  𝐵  ∧  𝑣  ∈  𝐵 ) )  →  ( 𝑤  +   0  )  =  𝑤 ) | 
						
							| 9 | 8 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  𝐵  ∧  𝑣  ∈  𝐵 ) )  →  𝑤  =  ( 𝑤  +   0  ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  𝐵  ∧  𝑣  ∈  𝐵 ) )  ∧  ( ( ( 𝑤  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑤 )  =   0  )  ∧  ( ( 𝑣  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑣 )  =   0  ) ) )  →  𝑤  =  ( 𝑤  +   0  ) ) | 
						
							| 11 |  | oveq2 | ⊢ (  0   =  ( 𝐴  +  𝑣 )  →  ( 𝑤  +   0  )  =  ( 𝑤  +  ( 𝐴  +  𝑣 ) ) ) | 
						
							| 12 | 11 | eqcoms | ⊢ ( ( 𝐴  +  𝑣 )  =   0   →  ( 𝑤  +   0  )  =  ( 𝑤  +  ( 𝐴  +  𝑣 ) ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ( 𝑣  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑣 )  =   0  )  →  ( 𝑤  +   0  )  =  ( 𝑤  +  ( 𝐴  +  𝑣 ) ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( ( 𝑤  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑤 )  =   0  )  ∧  ( ( 𝑣  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑣 )  =   0  ) )  →  ( 𝑤  +   0  )  =  ( 𝑤  +  ( 𝐴  +  𝑣 ) ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  𝐵  ∧  𝑣  ∈  𝐵 ) )  ∧  ( ( ( 𝑤  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑤 )  =   0  )  ∧  ( ( 𝑣  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑣 )  =   0  ) ) )  →  ( 𝑤  +   0  )  =  ( 𝑤  +  ( 𝐴  +  𝑣 ) ) ) | 
						
							| 16 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  𝐵  ∧  𝑣  ∈  𝐵 ) )  →  𝐺  ∈  Mnd ) | 
						
							| 17 | 6 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  𝐵  ∧  𝑣  ∈  𝐵 ) )  →  𝑤  ∈  𝐵 ) | 
						
							| 18 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  𝐵  ∧  𝑣  ∈  𝐵 ) )  →  𝐴  ∈  𝐵 ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝑤  ∈  𝐵  ∧  𝑣  ∈  𝐵 )  →  𝑣  ∈  𝐵 ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  𝐵  ∧  𝑣  ∈  𝐵 ) )  →  𝑣  ∈  𝐵 ) | 
						
							| 21 | 1 3 | mndass | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝑤  ∈  𝐵  ∧  𝐴  ∈  𝐵  ∧  𝑣  ∈  𝐵 ) )  →  ( ( 𝑤  +  𝐴 )  +  𝑣 )  =  ( 𝑤  +  ( 𝐴  +  𝑣 ) ) ) | 
						
							| 22 | 21 | eqcomd | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝑤  ∈  𝐵  ∧  𝐴  ∈  𝐵  ∧  𝑣  ∈  𝐵 ) )  →  ( 𝑤  +  ( 𝐴  +  𝑣 ) )  =  ( ( 𝑤  +  𝐴 )  +  𝑣 ) ) | 
						
							| 23 | 16 17 18 20 22 | syl13anc | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  𝐵  ∧  𝑣  ∈  𝐵 ) )  →  ( 𝑤  +  ( 𝐴  +  𝑣 ) )  =  ( ( 𝑤  +  𝐴 )  +  𝑣 ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  𝐵  ∧  𝑣  ∈  𝐵 ) )  ∧  ( ( ( 𝑤  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑤 )  =   0  )  ∧  ( ( 𝑣  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑣 )  =   0  ) ) )  →  ( 𝑤  +  ( 𝐴  +  𝑣 ) )  =  ( ( 𝑤  +  𝐴 )  +  𝑣 ) ) | 
						
							| 25 |  | oveq1 | ⊢ ( ( 𝑤  +  𝐴 )  =   0   →  ( ( 𝑤  +  𝐴 )  +  𝑣 )  =  (  0   +  𝑣 ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( ( 𝑤  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑤 )  =   0  )  →  ( ( 𝑤  +  𝐴 )  +  𝑣 )  =  (  0   +  𝑣 ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( ( 𝑤  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑤 )  =   0  )  ∧  ( ( 𝑣  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑣 )  =   0  ) )  →  ( ( 𝑤  +  𝐴 )  +  𝑣 )  =  (  0   +  𝑣 ) ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  𝐵  ∧  𝑣  ∈  𝐵 ) )  ∧  ( ( ( 𝑤  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑤 )  =   0  )  ∧  ( ( 𝑣  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑣 )  =   0  ) ) )  →  ( ( 𝑤  +  𝐴 )  +  𝑣 )  =  (  0   +  𝑣 ) ) | 
						
							| 29 | 1 3 2 | mndlid | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑣  ∈  𝐵 )  →  (  0   +  𝑣 )  =  𝑣 ) | 
						
							| 30 | 4 19 29 | syl2an | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  𝐵  ∧  𝑣  ∈  𝐵 ) )  →  (  0   +  𝑣 )  =  𝑣 ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  𝐵  ∧  𝑣  ∈  𝐵 ) )  ∧  ( ( ( 𝑤  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑤 )  =   0  )  ∧  ( ( 𝑣  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑣 )  =   0  ) ) )  →  (  0   +  𝑣 )  =  𝑣 ) | 
						
							| 32 | 24 28 31 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  𝐵  ∧  𝑣  ∈  𝐵 ) )  ∧  ( ( ( 𝑤  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑤 )  =   0  )  ∧  ( ( 𝑣  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑣 )  =   0  ) ) )  →  ( 𝑤  +  ( 𝐴  +  𝑣 ) )  =  𝑣 ) | 
						
							| 33 | 10 15 32 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑤  ∈  𝐵  ∧  𝑣  ∈  𝐵 ) )  ∧  ( ( ( 𝑤  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑤 )  =   0  )  ∧  ( ( 𝑣  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑣 )  =   0  ) ) )  →  𝑤  =  𝑣 ) | 
						
							| 34 | 33 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑤  ∈  𝐵  ∧  𝑣  ∈  𝐵 ) )  →  ( ( ( ( 𝑤  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑤 )  =   0  )  ∧  ( ( 𝑣  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑣 )  =   0  ) )  →  𝑤  =  𝑣 ) ) | 
						
							| 35 | 34 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑤  ∈  𝐵 ∀ 𝑣  ∈  𝐵 ( ( ( ( 𝑤  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑤 )  =   0  )  ∧  ( ( 𝑣  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑣 )  =   0  ) )  →  𝑤  =  𝑣 ) ) | 
						
							| 36 |  | oveq1 | ⊢ ( 𝑤  =  𝑣  →  ( 𝑤  +  𝐴 )  =  ( 𝑣  +  𝐴 ) ) | 
						
							| 37 | 36 | eqeq1d | ⊢ ( 𝑤  =  𝑣  →  ( ( 𝑤  +  𝐴 )  =   0   ↔  ( 𝑣  +  𝐴 )  =   0  ) ) | 
						
							| 38 |  | oveq2 | ⊢ ( 𝑤  =  𝑣  →  ( 𝐴  +  𝑤 )  =  ( 𝐴  +  𝑣 ) ) | 
						
							| 39 | 38 | eqeq1d | ⊢ ( 𝑤  =  𝑣  →  ( ( 𝐴  +  𝑤 )  =   0   ↔  ( 𝐴  +  𝑣 )  =   0  ) ) | 
						
							| 40 | 37 39 | anbi12d | ⊢ ( 𝑤  =  𝑣  →  ( ( ( 𝑤  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑤 )  =   0  )  ↔  ( ( 𝑣  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑣 )  =   0  ) ) ) | 
						
							| 41 | 40 | rmo4 | ⊢ ( ∃* 𝑤  ∈  𝐵 ( ( 𝑤  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑤 )  =   0  )  ↔  ∀ 𝑤  ∈  𝐵 ∀ 𝑣  ∈  𝐵 ( ( ( ( 𝑤  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑤 )  =   0  )  ∧  ( ( 𝑣  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑣 )  =   0  ) )  →  𝑤  =  𝑣 ) ) | 
						
							| 42 | 35 41 | sylibr | ⊢ ( 𝜑  →  ∃* 𝑤  ∈  𝐵 ( ( 𝑤  +  𝐴 )  =   0   ∧  ( 𝐴  +  𝑤 )  =   0  ) ) |