Description: Uniqueness of an inverse element in a monoid, if it exists. (Contributed by AV, 20-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mndinvmod.b | |
|
mndinvmod.0 | |
||
mndinvmod.p | |
||
mndinvmod.m | |
||
mndinvmod.a | |
||
Assertion | mndinvmod | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndinvmod.b | |
|
2 | mndinvmod.0 | |
|
3 | mndinvmod.p | |
|
4 | mndinvmod.m | |
|
5 | mndinvmod.a | |
|
6 | simpl | |
|
7 | 1 3 2 | mndrid | |
8 | 4 6 7 | syl2an | |
9 | 8 | eqcomd | |
10 | 9 | adantr | |
11 | oveq2 | |
|
12 | 11 | eqcoms | |
13 | 12 | adantl | |
14 | 13 | adantl | |
15 | 14 | adantl | |
16 | 4 | adantr | |
17 | 6 | adantl | |
18 | 5 | adantr | |
19 | simpr | |
|
20 | 19 | adantl | |
21 | 1 3 | mndass | |
22 | 21 | eqcomd | |
23 | 16 17 18 20 22 | syl13anc | |
24 | 23 | adantr | |
25 | oveq1 | |
|
26 | 25 | adantr | |
27 | 26 | adantr | |
28 | 27 | adantl | |
29 | 1 3 2 | mndlid | |
30 | 4 19 29 | syl2an | |
31 | 30 | adantr | |
32 | 24 28 31 | 3eqtrd | |
33 | 10 15 32 | 3eqtrd | |
34 | 33 | ex | |
35 | 34 | ralrimivva | |
36 | oveq1 | |
|
37 | 36 | eqeq1d | |
38 | oveq2 | |
|
39 | 38 | eqeq1d | |
40 | 37 39 | anbi12d | |
41 | 40 | rmo4 | |
42 | 35 41 | sylibr | |