Step |
Hyp |
Ref |
Expression |
1 |
|
mo5f.1 |
⊢ Ⅎ 𝑖 𝜑 |
2 |
|
mo5f.2 |
⊢ Ⅎ 𝑗 𝜑 |
3 |
2
|
mo3 |
⊢ ( ∃* 𝑥 𝜑 ↔ ∀ 𝑥 ∀ 𝑗 ( ( 𝜑 ∧ [ 𝑗 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑗 ) ) |
4 |
1
|
nfsbv |
⊢ Ⅎ 𝑖 [ 𝑗 / 𝑥 ] 𝜑 |
5 |
1 4
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ [ 𝑗 / 𝑥 ] 𝜑 ) |
6 |
|
nfv |
⊢ Ⅎ 𝑖 𝑥 = 𝑗 |
7 |
5 6
|
nfim |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ [ 𝑗 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑗 ) |
8 |
7
|
nfal |
⊢ Ⅎ 𝑖 ∀ 𝑗 ( ( 𝜑 ∧ [ 𝑗 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑗 ) |
9 |
8
|
sb8v |
⊢ ( ∀ 𝑥 ∀ 𝑗 ( ( 𝜑 ∧ [ 𝑗 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑗 ) ↔ ∀ 𝑖 [ 𝑖 / 𝑥 ] ∀ 𝑗 ( ( 𝜑 ∧ [ 𝑗 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑗 ) ) |
10 |
|
sbim |
⊢ ( [ 𝑖 / 𝑥 ] ( ( 𝜑 ∧ [ 𝑗 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑗 ) ↔ ( [ 𝑖 / 𝑥 ] ( 𝜑 ∧ [ 𝑗 / 𝑥 ] 𝜑 ) → [ 𝑖 / 𝑥 ] 𝑥 = 𝑗 ) ) |
11 |
|
sban |
⊢ ( [ 𝑖 / 𝑥 ] ( 𝜑 ∧ [ 𝑗 / 𝑥 ] 𝜑 ) ↔ ( [ 𝑖 / 𝑥 ] 𝜑 ∧ [ 𝑖 / 𝑥 ] [ 𝑗 / 𝑥 ] 𝜑 ) ) |
12 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑗 / 𝑥 ] 𝜑 |
13 |
12
|
sbf |
⊢ ( [ 𝑖 / 𝑥 ] [ 𝑗 / 𝑥 ] 𝜑 ↔ [ 𝑗 / 𝑥 ] 𝜑 ) |
14 |
13
|
bicomi |
⊢ ( [ 𝑗 / 𝑥 ] 𝜑 ↔ [ 𝑖 / 𝑥 ] [ 𝑗 / 𝑥 ] 𝜑 ) |
15 |
14
|
anbi2i |
⊢ ( ( [ 𝑖 / 𝑥 ] 𝜑 ∧ [ 𝑗 / 𝑥 ] 𝜑 ) ↔ ( [ 𝑖 / 𝑥 ] 𝜑 ∧ [ 𝑖 / 𝑥 ] [ 𝑗 / 𝑥 ] 𝜑 ) ) |
16 |
11 15
|
bitr4i |
⊢ ( [ 𝑖 / 𝑥 ] ( 𝜑 ∧ [ 𝑗 / 𝑥 ] 𝜑 ) ↔ ( [ 𝑖 / 𝑥 ] 𝜑 ∧ [ 𝑗 / 𝑥 ] 𝜑 ) ) |
17 |
|
equsb3 |
⊢ ( [ 𝑖 / 𝑥 ] 𝑥 = 𝑗 ↔ 𝑖 = 𝑗 ) |
18 |
16 17
|
imbi12i |
⊢ ( ( [ 𝑖 / 𝑥 ] ( 𝜑 ∧ [ 𝑗 / 𝑥 ] 𝜑 ) → [ 𝑖 / 𝑥 ] 𝑥 = 𝑗 ) ↔ ( ( [ 𝑖 / 𝑥 ] 𝜑 ∧ [ 𝑗 / 𝑥 ] 𝜑 ) → 𝑖 = 𝑗 ) ) |
19 |
10 18
|
bitri |
⊢ ( [ 𝑖 / 𝑥 ] ( ( 𝜑 ∧ [ 𝑗 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑗 ) ↔ ( ( [ 𝑖 / 𝑥 ] 𝜑 ∧ [ 𝑗 / 𝑥 ] 𝜑 ) → 𝑖 = 𝑗 ) ) |
20 |
19
|
sbalv |
⊢ ( [ 𝑖 / 𝑥 ] ∀ 𝑗 ( ( 𝜑 ∧ [ 𝑗 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑗 ) ↔ ∀ 𝑗 ( ( [ 𝑖 / 𝑥 ] 𝜑 ∧ [ 𝑗 / 𝑥 ] 𝜑 ) → 𝑖 = 𝑗 ) ) |
21 |
20
|
albii |
⊢ ( ∀ 𝑖 [ 𝑖 / 𝑥 ] ∀ 𝑗 ( ( 𝜑 ∧ [ 𝑗 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑗 ) ↔ ∀ 𝑖 ∀ 𝑗 ( ( [ 𝑖 / 𝑥 ] 𝜑 ∧ [ 𝑗 / 𝑥 ] 𝜑 ) → 𝑖 = 𝑗 ) ) |
22 |
3 9 21
|
3bitri |
⊢ ( ∃* 𝑥 𝜑 ↔ ∀ 𝑖 ∀ 𝑗 ( ( [ 𝑖 / 𝑥 ] 𝜑 ∧ [ 𝑗 / 𝑥 ] 𝜑 ) → 𝑖 = 𝑗 ) ) |