| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mo5f.1 | ⊢ Ⅎ 𝑖 𝜑 | 
						
							| 2 |  | mo5f.2 | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 3 | 2 | mo3 | ⊢ ( ∃* 𝑥 𝜑  ↔  ∀ 𝑥 ∀ 𝑗 ( ( 𝜑  ∧  [ 𝑗  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑗 ) ) | 
						
							| 4 | 1 | nfsbv | ⊢ Ⅎ 𝑖 [ 𝑗  /  𝑥 ] 𝜑 | 
						
							| 5 | 1 4 | nfan | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  [ 𝑗  /  𝑥 ] 𝜑 ) | 
						
							| 6 |  | nfv | ⊢ Ⅎ 𝑖 𝑥  =  𝑗 | 
						
							| 7 | 5 6 | nfim | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  [ 𝑗  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑗 ) | 
						
							| 8 | 7 | nfal | ⊢ Ⅎ 𝑖 ∀ 𝑗 ( ( 𝜑  ∧  [ 𝑗  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑗 ) | 
						
							| 9 | 8 | sb8f | ⊢ ( ∀ 𝑥 ∀ 𝑗 ( ( 𝜑  ∧  [ 𝑗  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑗 )  ↔  ∀ 𝑖 [ 𝑖  /  𝑥 ] ∀ 𝑗 ( ( 𝜑  ∧  [ 𝑗  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑗 ) ) | 
						
							| 10 |  | sbim | ⊢ ( [ 𝑖  /  𝑥 ] ( ( 𝜑  ∧  [ 𝑗  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑗 )  ↔  ( [ 𝑖  /  𝑥 ] ( 𝜑  ∧  [ 𝑗  /  𝑥 ] 𝜑 )  →  [ 𝑖  /  𝑥 ] 𝑥  =  𝑗 ) ) | 
						
							| 11 |  | sban | ⊢ ( [ 𝑖  /  𝑥 ] ( 𝜑  ∧  [ 𝑗  /  𝑥 ] 𝜑 )  ↔  ( [ 𝑖  /  𝑥 ] 𝜑  ∧  [ 𝑖  /  𝑥 ] [ 𝑗  /  𝑥 ] 𝜑 ) ) | 
						
							| 12 |  | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑗  /  𝑥 ] 𝜑 | 
						
							| 13 | 12 | sbf | ⊢ ( [ 𝑖  /  𝑥 ] [ 𝑗  /  𝑥 ] 𝜑  ↔  [ 𝑗  /  𝑥 ] 𝜑 ) | 
						
							| 14 | 13 | bicomi | ⊢ ( [ 𝑗  /  𝑥 ] 𝜑  ↔  [ 𝑖  /  𝑥 ] [ 𝑗  /  𝑥 ] 𝜑 ) | 
						
							| 15 | 14 | anbi2i | ⊢ ( ( [ 𝑖  /  𝑥 ] 𝜑  ∧  [ 𝑗  /  𝑥 ] 𝜑 )  ↔  ( [ 𝑖  /  𝑥 ] 𝜑  ∧  [ 𝑖  /  𝑥 ] [ 𝑗  /  𝑥 ] 𝜑 ) ) | 
						
							| 16 | 11 15 | bitr4i | ⊢ ( [ 𝑖  /  𝑥 ] ( 𝜑  ∧  [ 𝑗  /  𝑥 ] 𝜑 )  ↔  ( [ 𝑖  /  𝑥 ] 𝜑  ∧  [ 𝑗  /  𝑥 ] 𝜑 ) ) | 
						
							| 17 |  | equsb3 | ⊢ ( [ 𝑖  /  𝑥 ] 𝑥  =  𝑗  ↔  𝑖  =  𝑗 ) | 
						
							| 18 | 16 17 | imbi12i | ⊢ ( ( [ 𝑖  /  𝑥 ] ( 𝜑  ∧  [ 𝑗  /  𝑥 ] 𝜑 )  →  [ 𝑖  /  𝑥 ] 𝑥  =  𝑗 )  ↔  ( ( [ 𝑖  /  𝑥 ] 𝜑  ∧  [ 𝑗  /  𝑥 ] 𝜑 )  →  𝑖  =  𝑗 ) ) | 
						
							| 19 | 10 18 | bitri | ⊢ ( [ 𝑖  /  𝑥 ] ( ( 𝜑  ∧  [ 𝑗  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑗 )  ↔  ( ( [ 𝑖  /  𝑥 ] 𝜑  ∧  [ 𝑗  /  𝑥 ] 𝜑 )  →  𝑖  =  𝑗 ) ) | 
						
							| 20 | 19 | sbalv | ⊢ ( [ 𝑖  /  𝑥 ] ∀ 𝑗 ( ( 𝜑  ∧  [ 𝑗  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑗 )  ↔  ∀ 𝑗 ( ( [ 𝑖  /  𝑥 ] 𝜑  ∧  [ 𝑗  /  𝑥 ] 𝜑 )  →  𝑖  =  𝑗 ) ) | 
						
							| 21 | 20 | albii | ⊢ ( ∀ 𝑖 [ 𝑖  /  𝑥 ] ∀ 𝑗 ( ( 𝜑  ∧  [ 𝑗  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑗 )  ↔  ∀ 𝑖 ∀ 𝑗 ( ( [ 𝑖  /  𝑥 ] 𝜑  ∧  [ 𝑗  /  𝑥 ] 𝜑 )  →  𝑖  =  𝑗 ) ) | 
						
							| 22 | 3 9 21 | 3bitri | ⊢ ( ∃* 𝑥 𝜑  ↔  ∀ 𝑖 ∀ 𝑗 ( ( [ 𝑖  /  𝑥 ] 𝜑  ∧  [ 𝑗  /  𝑥 ] 𝜑 )  →  𝑖  =  𝑗 ) ) |