Step |
Hyp |
Ref |
Expression |
1 |
|
mo5f.1 |
|- F/ i ph |
2 |
|
mo5f.2 |
|- F/ j ph |
3 |
2
|
mo3 |
|- ( E* x ph <-> A. x A. j ( ( ph /\ [ j / x ] ph ) -> x = j ) ) |
4 |
1
|
nfsbv |
|- F/ i [ j / x ] ph |
5 |
1 4
|
nfan |
|- F/ i ( ph /\ [ j / x ] ph ) |
6 |
|
nfv |
|- F/ i x = j |
7 |
5 6
|
nfim |
|- F/ i ( ( ph /\ [ j / x ] ph ) -> x = j ) |
8 |
7
|
nfal |
|- F/ i A. j ( ( ph /\ [ j / x ] ph ) -> x = j ) |
9 |
8
|
sb8v |
|- ( A. x A. j ( ( ph /\ [ j / x ] ph ) -> x = j ) <-> A. i [ i / x ] A. j ( ( ph /\ [ j / x ] ph ) -> x = j ) ) |
10 |
|
sbim |
|- ( [ i / x ] ( ( ph /\ [ j / x ] ph ) -> x = j ) <-> ( [ i / x ] ( ph /\ [ j / x ] ph ) -> [ i / x ] x = j ) ) |
11 |
|
sban |
|- ( [ i / x ] ( ph /\ [ j / x ] ph ) <-> ( [ i / x ] ph /\ [ i / x ] [ j / x ] ph ) ) |
12 |
|
nfs1v |
|- F/ x [ j / x ] ph |
13 |
12
|
sbf |
|- ( [ i / x ] [ j / x ] ph <-> [ j / x ] ph ) |
14 |
13
|
bicomi |
|- ( [ j / x ] ph <-> [ i / x ] [ j / x ] ph ) |
15 |
14
|
anbi2i |
|- ( ( [ i / x ] ph /\ [ j / x ] ph ) <-> ( [ i / x ] ph /\ [ i / x ] [ j / x ] ph ) ) |
16 |
11 15
|
bitr4i |
|- ( [ i / x ] ( ph /\ [ j / x ] ph ) <-> ( [ i / x ] ph /\ [ j / x ] ph ) ) |
17 |
|
equsb3 |
|- ( [ i / x ] x = j <-> i = j ) |
18 |
16 17
|
imbi12i |
|- ( ( [ i / x ] ( ph /\ [ j / x ] ph ) -> [ i / x ] x = j ) <-> ( ( [ i / x ] ph /\ [ j / x ] ph ) -> i = j ) ) |
19 |
10 18
|
bitri |
|- ( [ i / x ] ( ( ph /\ [ j / x ] ph ) -> x = j ) <-> ( ( [ i / x ] ph /\ [ j / x ] ph ) -> i = j ) ) |
20 |
19
|
sbalv |
|- ( [ i / x ] A. j ( ( ph /\ [ j / x ] ph ) -> x = j ) <-> A. j ( ( [ i / x ] ph /\ [ j / x ] ph ) -> i = j ) ) |
21 |
20
|
albii |
|- ( A. i [ i / x ] A. j ( ( ph /\ [ j / x ] ph ) -> x = j ) <-> A. i A. j ( ( [ i / x ] ph /\ [ j / x ] ph ) -> i = j ) ) |
22 |
3 9 21
|
3bitri |
|- ( E* x ph <-> A. i A. j ( ( [ i / x ] ph /\ [ j / x ] ph ) -> i = j ) ) |