| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mo5f.1 |  |-  F/ i ph | 
						
							| 2 |  | mo5f.2 |  |-  F/ j ph | 
						
							| 3 | 2 | mo3 |  |-  ( E* x ph <-> A. x A. j ( ( ph /\ [ j / x ] ph ) -> x = j ) ) | 
						
							| 4 | 1 | nfsbv |  |-  F/ i [ j / x ] ph | 
						
							| 5 | 1 4 | nfan |  |-  F/ i ( ph /\ [ j / x ] ph ) | 
						
							| 6 |  | nfv |  |-  F/ i x = j | 
						
							| 7 | 5 6 | nfim |  |-  F/ i ( ( ph /\ [ j / x ] ph ) -> x = j ) | 
						
							| 8 | 7 | nfal |  |-  F/ i A. j ( ( ph /\ [ j / x ] ph ) -> x = j ) | 
						
							| 9 | 8 | sb8f |  |-  ( A. x A. j ( ( ph /\ [ j / x ] ph ) -> x = j ) <-> A. i [ i / x ] A. j ( ( ph /\ [ j / x ] ph ) -> x = j ) ) | 
						
							| 10 |  | sbim |  |-  ( [ i / x ] ( ( ph /\ [ j / x ] ph ) -> x = j ) <-> ( [ i / x ] ( ph /\ [ j / x ] ph ) -> [ i / x ] x = j ) ) | 
						
							| 11 |  | sban |  |-  ( [ i / x ] ( ph /\ [ j / x ] ph ) <-> ( [ i / x ] ph /\ [ i / x ] [ j / x ] ph ) ) | 
						
							| 12 |  | nfs1v |  |-  F/ x [ j / x ] ph | 
						
							| 13 | 12 | sbf |  |-  ( [ i / x ] [ j / x ] ph <-> [ j / x ] ph ) | 
						
							| 14 | 13 | bicomi |  |-  ( [ j / x ] ph <-> [ i / x ] [ j / x ] ph ) | 
						
							| 15 | 14 | anbi2i |  |-  ( ( [ i / x ] ph /\ [ j / x ] ph ) <-> ( [ i / x ] ph /\ [ i / x ] [ j / x ] ph ) ) | 
						
							| 16 | 11 15 | bitr4i |  |-  ( [ i / x ] ( ph /\ [ j / x ] ph ) <-> ( [ i / x ] ph /\ [ j / x ] ph ) ) | 
						
							| 17 |  | equsb3 |  |-  ( [ i / x ] x = j <-> i = j ) | 
						
							| 18 | 16 17 | imbi12i |  |-  ( ( [ i / x ] ( ph /\ [ j / x ] ph ) -> [ i / x ] x = j ) <-> ( ( [ i / x ] ph /\ [ j / x ] ph ) -> i = j ) ) | 
						
							| 19 | 10 18 | bitri |  |-  ( [ i / x ] ( ( ph /\ [ j / x ] ph ) -> x = j ) <-> ( ( [ i / x ] ph /\ [ j / x ] ph ) -> i = j ) ) | 
						
							| 20 | 19 | sbalv |  |-  ( [ i / x ] A. j ( ( ph /\ [ j / x ] ph ) -> x = j ) <-> A. j ( ( [ i / x ] ph /\ [ j / x ] ph ) -> i = j ) ) | 
						
							| 21 | 20 | albii |  |-  ( A. i [ i / x ] A. j ( ( ph /\ [ j / x ] ph ) -> x = j ) <-> A. i A. j ( ( [ i / x ] ph /\ [ j / x ] ph ) -> i = j ) ) | 
						
							| 22 | 3 9 21 | 3bitri |  |-  ( E* x ph <-> A. i A. j ( ( [ i / x ] ph /\ [ j / x ] ph ) -> i = j ) ) |