Metamath Proof Explorer


Theorem mrissmrid

Description: In a Moore system, subsets of independent sets are independent. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mrissmrid.1 ( 𝜑𝐴 ∈ ( Moore ‘ 𝑋 ) )
mrissmrid.2 𝑁 = ( mrCls ‘ 𝐴 )
mrissmrid.3 𝐼 = ( mrInd ‘ 𝐴 )
mrissmrid.4 ( 𝜑𝑆𝐼 )
mrissmrid.5 ( 𝜑𝑇𝑆 )
Assertion mrissmrid ( 𝜑𝑇𝐼 )

Proof

Step Hyp Ref Expression
1 mrissmrid.1 ( 𝜑𝐴 ∈ ( Moore ‘ 𝑋 ) )
2 mrissmrid.2 𝑁 = ( mrCls ‘ 𝐴 )
3 mrissmrid.3 𝐼 = ( mrInd ‘ 𝐴 )
4 mrissmrid.4 ( 𝜑𝑆𝐼 )
5 mrissmrid.5 ( 𝜑𝑇𝑆 )
6 3 1 4 mrissd ( 𝜑𝑆𝑋 )
7 5 6 sstrd ( 𝜑𝑇𝑋 )
8 2 3 1 6 ismri2d ( 𝜑 → ( 𝑆𝐼 ↔ ∀ 𝑥𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) )
9 4 8 mpbid ( 𝜑 → ∀ 𝑥𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) )
10 5 sseld ( 𝜑 → ( 𝑥𝑇𝑥𝑆 ) )
11 5 ssdifd ( 𝜑 → ( 𝑇 ∖ { 𝑥 } ) ⊆ ( 𝑆 ∖ { 𝑥 } ) )
12 6 ssdifssd ( 𝜑 → ( 𝑆 ∖ { 𝑥 } ) ⊆ 𝑋 )
13 1 2 11 12 mrcssd ( 𝜑 → ( 𝑁 ‘ ( 𝑇 ∖ { 𝑥 } ) ) ⊆ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) )
14 13 ssneld ( 𝜑 → ( ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑇 ∖ { 𝑥 } ) ) ) )
15 10 14 imim12d ( 𝜑 → ( ( 𝑥𝑆 → ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) → ( 𝑥𝑇 → ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑇 ∖ { 𝑥 } ) ) ) ) )
16 15 ralimdv2 ( 𝜑 → ( ∀ 𝑥𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) → ∀ 𝑥𝑇 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑇 ∖ { 𝑥 } ) ) ) )
17 9 16 mpd ( 𝜑 → ∀ 𝑥𝑇 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑇 ∖ { 𝑥 } ) ) )
18 2 3 1 7 17 ismri2dd ( 𝜑𝑇𝐼 )