| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ne0i | ⊢ ( 𝐴  ∈  𝐵  →  𝐵  ≠  ∅ ) | 
						
							| 2 |  | eqsn | ⊢ ( 𝐵  ≠  ∅  →  ( 𝐵  =  { 𝐴 }  ↔  ∀ 𝑥  ∈  𝐵 𝑥  =  𝐴 ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐴  ∈  𝐵  →  ( 𝐵  =  { 𝐴 }  ↔  ∀ 𝑥  ∈  𝐵 𝑥  =  𝐴 ) ) | 
						
							| 4 | 3 | biimprd | ⊢ ( 𝐴  ∈  𝐵  →  ( ∀ 𝑥  ∈  𝐵 𝑥  =  𝐴  →  𝐵  =  { 𝐴 } ) ) | 
						
							| 5 | 4 | con3d | ⊢ ( 𝐴  ∈  𝐵  →  ( ¬  𝐵  =  { 𝐴 }  →  ¬  ∀ 𝑥  ∈  𝐵 𝑥  =  𝐴 ) ) | 
						
							| 6 |  | df-ne | ⊢ ( 𝐵  ≠  { 𝐴 }  ↔  ¬  𝐵  =  { 𝐴 } ) | 
						
							| 7 |  | nne | ⊢ ( ¬  𝑥  ≠  𝐴  ↔  𝑥  =  𝐴 ) | 
						
							| 8 | 7 | bicomi | ⊢ ( 𝑥  =  𝐴  ↔  ¬  𝑥  ≠  𝐴 ) | 
						
							| 9 | 8 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐵 𝑥  =  𝐴  ↔  ∀ 𝑥  ∈  𝐵 ¬  𝑥  ≠  𝐴 ) | 
						
							| 10 |  | ralnex | ⊢ ( ∀ 𝑥  ∈  𝐵 ¬  𝑥  ≠  𝐴  ↔  ¬  ∃ 𝑥  ∈  𝐵 𝑥  ≠  𝐴 ) | 
						
							| 11 | 9 10 | bitri | ⊢ ( ∀ 𝑥  ∈  𝐵 𝑥  =  𝐴  ↔  ¬  ∃ 𝑥  ∈  𝐵 𝑥  ≠  𝐴 ) | 
						
							| 12 | 11 | con2bii | ⊢ ( ∃ 𝑥  ∈  𝐵 𝑥  ≠  𝐴  ↔  ¬  ∀ 𝑥  ∈  𝐵 𝑥  =  𝐴 ) | 
						
							| 13 | 5 6 12 | 3imtr4g | ⊢ ( 𝐴  ∈  𝐵  →  ( 𝐵  ≠  { 𝐴 }  →  ∃ 𝑥  ∈  𝐵 𝑥  ≠  𝐴 ) ) | 
						
							| 14 | 13 | imp | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐵  ≠  { 𝐴 } )  →  ∃ 𝑥  ∈  𝐵 𝑥  ≠  𝐴 ) |